精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是正方形,EF分别是DCCB的延长线上的点,且DEBF,连接AEAFEF.

(1)求证:△ADE≌△ABF

(2)ABF可以由△ADE绕旋转中心________点,按顺时针旋转________度得到;

(3)BC8DE6,求△AEF的面积.

【答案】1)见解析2A 90 350

【解析】试题分析: (1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;

(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠BAE=90°,即∠FAE=90°,根据旋转的定义可得到△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90度得到;

(3)先利用勾股定理可计算出AE=10,再根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.

试题解析:

(1)证明:∵四边形ABCD为正方形,

ABAD,∠ABF=∠ADE90°.

DEBF

∴△ADE≌△ABF

(2) ADEABF,

∴∠BAF=∠DAE,

而∠DAE+∠EAB=90°

∴∠BAF+∠EAB=90°,即∠FAE=90°

∴△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到;

故答案为A.90;

(3)RtADE中,

ADBC8DE6

AE10.

由题意可知AFAE10,∠EAF90°

SAEFAE·AF50.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB、AC与⊙O相切于点B、C,∠A=50°,P为⊙O上异于B、C的一个动点,则∠BPC的度数为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三条互不重合的直线的交点个数可能是( )
A.0,1,3
B.0,2,3
C.0,1,2,3
D.0,1,2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆.当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是(  )

A. 140 B. 150 C. 160 D. 180

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ACB=90°,AC=3,BC=4.将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,点O是正方形ABCD两对角线的交点,分别延长OD到点GOC到点E,使OG2ODOE2OC,然后以OGOE为邻边作正方形OEFG,连接AGDE.

(1)求证:DEAG

(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α(0°α360°)得到正方形OEFG,如图②.

①在旋转过程中,当∠OAG是直角时,求α的度数;

②若正方形ABCD的边长为1,在旋转过程中,求AF长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(3分)如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是(

A20海里 B40海里 C海里 D海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(
A.a5+a5=a10
B.a7÷a=a6
C.a3a2=a6
D.(﹣a32=﹣a6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个正数x的两个平方根分别是a+2a-4,则a=______x=______

查看答案和解析>>

同步练习册答案