【题目】如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰Rt△CDE,连接AD,下列说法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为.其中,正确的结论是( )
A. ①②④ B. ①③⑤ C. ②③④ D. ①④⑤
【答案】
【解析】试题分析:首先根据已知条件看能得到哪些等量条件,然后根据得出的条件来判断各结论是否正确.
解:∵△ABC、△DCE都是等腰Rt△,
∴AB=AC=BC=,CD=DE=CE;
∠B=∠ACB=∠DEC=∠DCE=45°;
①∵∠ACB=∠DCE=45°,
∴∠ACB﹣∠ACE=∠DCE﹣∠ACE;
即∠ECB=∠DCA;故①正确;
②当B、E重合时,A、D重合,此时DE⊥AC;
当B、E不重合时,A、D也不重合,由于∠BAC、∠EDC都是直角,则∠AFE、∠DFC必为锐角;
故②不完全正确;
④∵,∴;
由①知∠ECB=∠DCA,∴△BEC∽△ADC;
∴∠DAC=∠B=45°;
∴∠DAC=∠BCA=45°,即AD∥BC,故④正确;
③由④知:∠DAC=45°,则∠EAD=135°;
∠BEC=∠EAC+∠ECA=90°+∠ECA;
∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;
因此△EAD与△BEC不相似,故③错误;
⑤△ABC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;
△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;
由④的△BEC∽△ADC知:当AD最长时,BE也最长;
故梯形ABCD面积最大时,E、A重合,此时EC=AC=,AD=1;
故S梯形ABCD=(1+2)×1=,故⑤正确;
因此本题正确的结论是①④⑤,故选D.
科目:初中数学 来源: 题型:
【题目】图书馆现有200本图书供学生借阅,如果每个学生一次借4本,则剩下的书y(本)和借书学生人数x(人)之间的关系式是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.
(1)在图中画出四边形AB′C′D′;
(2)填空:△AC′D′是 三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工地调来144人参加挖土和运土,已知3人挖出的土1人恰好能全部运走.怎样调配劳动力才能使挖出来的土及时运走且不窝工(停工等待).为解决此问题,可设派x人挖土,其他人运土.列方程为:① = ;②144-x= ;③x+3x=144;
④ =3.上述所列方程中,正确的有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的 切线,交OD的延长线于点E,连接BE、AD并延长AD交BE于点F,
(1)求证:BE是⊙O的切线
(2)若OB=9,sin∠ABC=,求BF的长
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com