精英家教网 > 初中数学 > 题目详情

【题目】探究题
(1)探究发现:
下面是一道例题及其解答过程,请补充完整:
如图①在等边△ABC内部,有一点P,若∠APB=150°.求证:AP2+BP2=CP2

证明:将△APC绕A点逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形
∴∠APP′=60° PA=PP′PC=
∵∠APB=150°∴∠BPP′=90°
∴P′P2+BP2=
即PA2+PB2=PC2
(2)类比延伸:
如图②在等腰三角形ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA、PB、PC之间的数量关系,并证明.

(3)联想拓展:
如图③在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2 , 请直接写出k的值.

【答案】
(1)P′B;P′B2
(2)

解:关系式为:2PA2+PB2=PC2

证明如图②:将△APC绕A点逆时针旋转90°,得到△AP′B,连接PP′,

则△APP′为等腰直角三角形

∴∠APP′=45°PP′= PA,PC=P′B,

∵∠APB=135°

∴∠BPP′=90°

∴P′P2+BP2=P′B2

∴2PA2+PB2=PC2


(3)

解:k=

证明:如图③

将△APC 绕A点顺时针旋转120°得到△AP′B,连接PP′,过点A作AH⊥PP′,

可得∠APP′=30°PP′= PA,PC=P′B,

∵∠APB=60°,

∴∠BPP′=90°,

∴P′P2+BP2=P′B2

∴( PA)2+PB2=PC2

∵(kPA)2+PB2=PC2

∴k=


【解析】解:(1)PC=P′B
P′P2+BP2=P′B2
【考点精析】本题主要考查了图形的旋转的相关知识点,需要掌握每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】全面二孩政策于201611日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):

A非常愿意    B愿意    C不愿意    D无所谓

如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:

1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;

2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?

3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1探究如图直线ABBCAC两两相交交点分别为点ABCD在线段AB过点DDEBCAC于点E过点EEFABBC于点F.若ABC=40°DEF的度数

请将下面的解答过程补充完整并填空(理由或数学式)

DEBC∴∠DEF= .(  )

EFAB =∠ABC.(  )

∴∠DEF=∠ABC(等量代换)

∵∠ABC=40°∴∠DEF= °

2应用如图直线ABBCAC两两相交交点分别为点ABCD在线段AB的延长线上过点DDEBCAC于点E过点EEFABBC于点F.若ABC=60°DEF= °

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)如图,直线AB,CD相交于点O,OE⊥CD于点O,OD平分∠BOF,∠BOE=50

求∠AOC,∠AOF,∠EOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为1的小正方形网格中,△AOB的顶点均在格点上.

(1)B点关于y轴的对称点坐标为

(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1

(3)在(2)的条件下,A1的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程(组)和不等式(组)

(1) (2)

(3) (4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:

探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?

已知:如图1FDCECD分别为ADC的两个外角,试探究AFDC+ECD的数量关系为:____________________(直接写出结果).

探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?

已知:如图2,在ADC中,DPCP分别平分ADCACD,试探究PA的数量关系为:____________________(直接写出结果).

探究三:若将ADC改为任意四边形ABCD呢?

已知:如图3,在四边形ABCD中,DPCP分别平分ADCBCD试利用上述结论探究PA+B的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】班委会决定,选购圆珠笔、钢笔共22支,送给山区学校的同学。已知圆珠笔每支5元,钢笔每支6元。

(1)若购买圆珠笔、钢笔刚好用去120元,问圆珠笔、钢笔各买多少支?

(2)若购圆珠笔可9折优惠,钢笔可8折优惠,在所需费用不超过100元的前提下,请你写出一种选购方案。

查看答案和解析>>

同步练习册答案