【题目】已知,如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积.
【答案】(1)y=﹣x2+4x+5;(2)15.
【解析】
(1)由A、C、(1,8)三点在抛物线上,根据待定系数法即可求出抛物线的解析式;
(2)由B、C两点的坐标求得直线BC的解析式;过点M作MN∥y轴交BC轴于点N,则△MCB的面积=△MCN的面积+△MNB的面积=
(1)∵A(﹣1,0),C(0,5),(1,8)三点在抛物线y=ax2+bx+c上,
∴,
解方程组,得,
故抛物线的解析式为y=﹣x2+4x+5;
(2)∵y=﹣x2+4x+5=﹣(x﹣5)(x+1)=﹣(x﹣2)2+9,
∴M(2,9),B(5,0),
设直线BC的解析式为:y=kx+b,
解得,
则直线BC的解析式为:y=﹣x+5.
过点M作MN∥y轴交BC轴于点N,
则△MCB的面积=△MCN的面积+△MNB的面积=
当x=2时,y=﹣2+5=3,则N(2,3),
则MN=9﹣3=6,
则
科目:初中数学 来源: 题型:
【题目】如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于( )
A. B. 2 C. 4 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连接AF,BF,EF,过点F作GF⊥AF交AD于点G,设.
(1)求证:AE=GE;
(2)当点F落在AC上时,用含n的代数式表示的值;
(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣ax+b的图象与反比例函数的图象相交于点A(﹣4,﹣2),B(m,4),与y轴相交于点C.
(1)求反比例函数和一次函数的表达式;
(2)求点C的坐标及△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:已知实数m、n满足,求的值.
解:设,则原方程可化为(t+1)(t-1)=35,整理得t2-1=35,t2=36,
∴t=±6,
∵,
∴
上面这种解题方法为“换元法”,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,则能使复杂的问题简单化,根据“换元法”解决下列问题:
(1)已知实数x、y满足,求的值;
(2)若四个连续正整数的积为360,求这四个连续的正整数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是3.
(1)求k的值;
(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y= (k≠0)交于点N,若点M在N右边,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC=5,BC=8,D,E分别为BC,AB边上一点,∠ADE=∠C.
(1)求证:△BDE∽△CAD;
(2)若CD=2,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论中:①abc>0;②2a+b=0;③3|a|<2|b|;④b2﹣4ac<0;⑤4a+2b+c>0;⑥a+b≤n(an+b)(n为一切实数),其中正确的是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在钝角△ABC中,AB=3cm,AC=6cm,动点D从点A出发到点B止.动点E从点C出发到点A止.点D运动的速度为1cm/s,点E运动的速度为2cm/s.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时.运动的时间是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com