精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,二次函数图象与轴交于A(-3,0),B(1,0)两点,与y轴交于点C.

1)求这个二次函数的解析式;

2)点P是直线AC上方的抛物线上一动点,是否存在点P,使ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;

3)点Q是直线AC上方的抛物线上一动点,过点QQE垂直于轴,垂足为E.是否存在点Q,使以点BQE为顶点的三角形与AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;

【答案】1

(2)存在点,使△ACP的面积最大

(3)存在点Q,坐标为:

【解析】

试题分析:26.解:(1)由抛物线A(-3,0),B(1,0),

 …………………………………………………………1分

解得  ………………………………………………………………2分

∴二次函数的关系解析式…………………………3分

(2)连接PO,作PM⊥x轴于M,PN⊥y轴于N4分

设点P坐标为(m,n),则

PM =,AO=3.(5分)

时,=2.

∴OC=2……………………………………………………………6分

.8分

=-1<0,∴当时,函数有最大值

此时…………9分

∴存在点,使△ACP的面积最大……………………………10分

3)存在点Q,坐标为:.   ………………………12分

分△BQE∽△AOC,△EBQ∽△AOC,△QEB∽△AOC三种情况讨论可得出.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.

如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.

(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.

(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.

(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上每相邻两点间的距离为一个单位长度,点对应的数分别是,且.

1)那么

2)点个单位/秒的速度沿着数轴的正方向运动,秒后点个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;

3)如果两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形,则阴影部分面积是( )

A.12B.10C.8D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)+3+(-5)

(2)-89-11

3)(﹣5.5+(﹣3.2)﹣(﹣2.5)﹣4.8

417﹣(﹣8×(﹣2+4×(﹣3

5(-32)-[5-(+3)+(-5)+(-2)]

6)(×(﹣12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,甲在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是( )米

A. 150 B. 175 C. 180 D. 225

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,ABC=ADC=90°,对角线AC,BD交于点O,DE平分∠ADCBC于点E,连接OE.

(1)求证:四边形ABCD是矩形;

(2)若AB=2,求OEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°DAC上一点,连接BDDFBDAB于点FBDF的外接圆⊙O与边BC相较于点M,与AC相切于点D。过点MAB的垂线交BD于点E,交⊙O于点N,交AB于点H,连接FN.

1)求证:BD平分∠ABC

2)连接FMBD相交于点K,求证:MK=ME

3)若AF=1tanN=,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在由边长为1的小正方形组成的网格图中有一个格点三角形ABC.(注:顶点均在网格线交点处的三角形称为格点三角形)

1)请直接写出sinABC的值:

2)请在图中画格点三角形DEF,使得DEF∽△ABC,且相似比为21

3)请在图中确定格点M,使得BCM的面积为6.如果符合题意的格点M不止一个,请分别用M1M2M3表示.

查看答案和解析>>

同步练习册答案