精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴交于两点,是以点0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是(

A. B. C. D.

【答案】C

【解析】

根据抛物线解析式可求得点A-4,0),B4,0),故O点为AB的中点,又QAP上的中点可知OQ=BP,故OQ最大即为BP最大,即连接BC并延长BC交圆于点PBP最大,进而即可求得OQ的最大值.

抛物线轴交于两点

∴A-4,0),B4,0),即OA=4.

在直角三角形COB

BC=

∵QAP上的中点,OAB的中点

∴OQ△ABP中位线,即OQ=BP

∵P在圆C上,且半径为2

∴当BCP共线时BP最大,即OQ最大

此时BP=BC+CP=7

OQ=BP=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图,在直角坐标系xOy中,点A,点B坐标分别为(﹣1,0),(0, ),连结AB,OD△AOBO点顺时针旋转60°而得.

(1)求点C的坐标;

(2)△AOB绕点O顺时针旋转60°所扫过的面积;

(3)线段AB绕点O顺时针旋转60°所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于点A(﹣, 0),点B(2,0),与y轴交于点C(0,1),连接BC.

(1)求抛物线的解析式;

(2)N为抛物线上的一个动点,过点NNP⊥x轴于点P,设点N的横坐标为t(﹣<t<2),求△ABN的面积st的函数解析式;

(3)若0<t<2t≠0时,△OPN∽△COB,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A.B两点,以AB为边在第一象限内作正方形ABCD,顶点D在双曲线y=kx-1上,将该正方形沿x轴负方向平移a个单位长度后,顶点C恰好落在双曲线y=kx-1上,则a的值是( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:

ab)(a+b)=a2b2

ab)(a2+ab+b2)=a3b3

ab)(a3+a2b+ab2+b3)=a4b4

利用你的发现的规律解决下列问题

1)(ab)(a4+a3b+a2b2+ab3+b4)=   (直接填空);

2)(ab)(an1+an2b+an3b2…+abn2+bn1)=   (直接填空);

3)利用(2)中得出的结论求62019+62018+…+62+6+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的边长为在正方形外,,过,直线交于点,直线交直线于点,则下列结论正确的是(

;②;③

④若,则

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.

应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为(  )

A(60°,4) B(45°,4) C(60°,2 D(50°,2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点P是正方形ABCD内的一点,连接PA,PB,PC.将PAB绕点B顺时针旋转90°到P′CB的位置(如图).

(1)设AB的长为a,PB的长为b(ba),求PAB旋转到P′CB的过程中边PA所扫过区域(图中阴影部分)的面积;

(2)若PA=2,PB=4,APB=135°,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,函数y=ax2+b与y=bx2+ax的图象可能是(  )

A. A B. B C. C D. D

查看答案和解析>>

同步练习册答案