精英家教网 > 初中数学 > 题目详情

【题目】阅读理解:

如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.

应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为(  )

A(60°,4) B(45°,4) C(60°,2 D(50°,2

【答案】A.

【解析】

试题如图,设正六边形的中心为D,连接AD,

∵∠ADO=360°÷6=60°,OD=AD,

∴△AOD是等边三角形,

OD=OA=2,AOD=60°

OC=2OD=2×2=4,

正六边形的顶点C的极坐标应记为(60°,4).

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】股民王先生上周星期五买进某公司股票1000股,每股18元,本周该股票的涨跌情况如表(正数表示价格比前一天上涨,负数表示价格比前一天下跌,单位:元)

星期

每股涨跌

1)星期三结束时,该股票每股多少元?

2)该股票本周内每股的最高价和最低价分别是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为解决农村燃气困难,在P处建立了一个燃气站,从P站分别向ABC村铺设燃气管道。已知B村在A村的北偏东60°方向,距离A2.4kmC村在A村的正东方向,距离A1.8km,要使此工程费用最省,管道PA+PB+PC之和需最短,则最短长度为______________km.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点,是以点0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间(时)的关系可近似地用二次函数刻画;1.5时后(包括1.5时)y与x可近似地用反比例函数(k>0)刻画(如图所示).

(1)根据上述数学模型计算:

喝酒后几时血液中的酒精含量达到最大值?最大值为多少?

=5时,y=45.求k的值.

(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为圆的直径,为圆上一点,延长线一点,且于点

1)求证:直线为圆的切线;

2)设与圆交于点的延长线与交于点

①求证:

②若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BECF分别是钝角△ABC(∠A>90°)的高,在BE上截取BPAC,在CF的延长线截取CQAB,连结APAQ,请推测APAQ的数量和位置关系并加以证明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EAB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长APCDF点,连结CP并延长CPADQ点.给出以下结论:

①四边形AECF为平行四边形;

②∠PBA=APQ;

③△FPC为等腰三角形;

④△APB≌△EPC.

其中正确结论的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.

(1)请再给出一种利用图象求方程x2-2x-1=0的解的方法;

(2)已知函数y=x3的图象(如图),求方程x3-x-2=0的解(结果保留两位有效数字).

查看答案和解析>>

同步练习册答案