【题目】如图,正方形的边长为,在正方形外,,过作于,直线,交于点,直线交直线于点,则下列结论正确的是( )
①;②;③;
④若,则
A.1个B.2个C.3个D.4个
【答案】C
【解析】
①利用等腰三角形的性质即可证明.②根据DA=DC=DE,利用圆周角定理可知∠AEC=∠ADC=45°,即可解决问题.③如图,作DF⊥DM交PM于F,证明△ADM≌△CDF(SAS)即可解决问题.④解直角三角形求出CE=EF=可得结论.
∵四边形ABCD是正方形,
∴DA=DC,∠ADC=90°,
∵DC=DE,
∴DA=DE,
∴∠DAE=∠DEA,故①正确,
∵DA=DC=DE,
∴∠AEC=∠ADC=45°(圆周角定理),
∵DM⊥AE,
∴∠EHM=90°,
∴∠DMC=45°,故②正确,
如图,作DF⊥DM交PM于F,
∵∠ADC=∠MDF=90°,
∴∠ADM=∠CDF,
∵∠DMF=45°,
∴∠DMF=∠DFM=45°,
∴DM=DF,∵DA=DC,
∴△ADM≌△CDF(SAS),
∴AM=CF,
∴AM+CM=CF+CM=MF=DM,
∴=,故③正确,
若MH=2,则易知AH=MH=HE=2,AM=EM=2,
在Rt△ADH中, ,
∴DM=3,AM+CM=3,
∴CM=CE=,
∴S△DCM=S△DCE,故④错误,
故选C.
科目:初中数学 来源: 题型:
【题目】请解答下列各题:
(1)数轴上表示和的两点和之间的距离表示为_______,如果,那么_______.
(2)若点表示的整数为,则当________时,.
(3)要使取最小值时,相应的的取值范围是________,最小值是________.
(4)已知,则的最大值为_______,最小值为_______.
(5)若,则的取值范围是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图22,将—矩形OABC放在直角坐际系中,O为坐标原点.点A在x轴正半轴上.点E是边AB上的—个动点(不与点A、N重合),过点E的反比例函数的图象与边BC交于点F。
【1】若△OAE、△OCF的而积分别为S1、S2.且S1+S2=2,求的值:
【2】若OA=2.0C=4.问当点E运动到什么位置时,四边形OAEF的面积最大.其最大值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有、两种商品,已知买一件商品要比买一件商品少30元,用160元全部购买商品的数量与用400元全部购买商品的数量相同.
(1)求、两种商品每件各是多少元?
(2)如果小亮准备购买、两种商品共10件,总费用不超过380元,且不低于300元,则如何购买才能使总费用最低?最低费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为圆的直径,为圆上一点,为延长线一点,且,于点.
(1)求证:直线为圆的切线;
(2)设与圆交于点,的延长线与交于点,
①求证:
②若,,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:
在△ABC中,AB=9,AC=5,求BC边上的中线AD的取值范围。
小明在组内经过合作交流,得到了如下的解决方法(如图1):
①延长AD到Q,使得DQ=AD;
②再连接BQ,把AB、AC、2AD集中在△ABQ中;
③利用三角形的三边关系可得4<AQ<14,则AD的取值范围是_____________。
感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的己知条件和所求证的结论集中到同一个三角形中。
(2)请你写出图1中AC与BQ的位置关系并证明。
(3)思考:已知,如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°。试探究线段AD与EF的数量和位置关系并加以证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.
(1)求m,n的值;
(2)x取什么值时,y随x的增大而减小?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com