分析 连接BD,根据AB=AD=2,∠A=60°,得出△ABD是等边三角形,求得BD=2,然后根据勾股定理的逆定理判断三角形BDC是直角三角形,从而求得∠ADC=150°.
解答 解:连接BD,![]()
∵AB=AD=2,∠A=60°,
∴△ABD是等边三角形,
∴BD=2,∠ADB=60°,
∵BC=2$\sqrt{5}$,CD=4,
则BD2+CD2=22+42=20,BC2=(2$\sqrt{5}$)2=20,
∴BD2+CD2=BC2,
∴∠BDC=90°,
∴∠ADC=150°.
点评 本题考查了等边三角形的判定和性质,直角三角形的判定和性质,关键是根据勾股定理的逆定理判断三角形BDC是直角三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x2+y2=(x+y)(x-y) | B. | m2-2m+1=(m+1)2 | C. | (a+4)(a-4)=a2-16 | D. | x3-x=x(x2-1) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 总体 | B. | 个体 | C. | 总体的一个样本 | D. | 普查方式 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com