【题目】如图,已知抛物线过点,,.点为抛物线上的动点,过点作轴,交直线于点,交轴于点.
(1)求二次函数的表达式;
(2)过点作轴,垂足为点.若四边形为正方形(此处限定点在对称轴的右侧),求该正方形的面积;
(3)若,,求点的横坐标.
【答案】(1)y=﹣x2+2x+3(2)24+8或24﹣8(3)点M的横坐标为、2、﹣1、
【解析】
试题分析:(1)待定系数法求解可得;
(2)设点M坐标为(m,﹣m2+2m+3),分别表示出ME=|﹣m2+2m+3|、MN=2m﹣2,由四边形MNFE为正方形知ME=MN,据此列出方程,分类讨论求解可得;
(3)先求出直线BC解析式,设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3)、点D(a,﹣a+3),由MD=MN列出方程,根据点M的位置分类讨论求解可得.
试题解析:(1)∵抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),
∴设抛物线的函数解析式为y=a(x+1)(x﹣3),
将点C(0,3)代入上式,得:3=a(0+1)(0﹣3),
解得:a=﹣1,
∴所求抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;
(2)由(1)知,抛物线的对称轴为x=﹣=1,
如图1,设点M坐标为(m,﹣m2+2m+3),
∴ME=|﹣m2+2m+3|,
∵M、N关于x=1对称,且点M在对称轴右侧,
∴点N的横坐标为2﹣m,
∴MN=2m﹣2,
∵四边形MNFE为正方形,
∴ME=MN,
∴|﹣m2+2m+3|=2m﹣2,
分两种情况:
①当﹣m2+2m+3=2m﹣2时,解得:m1=、m2=﹣(不符合题意,舍去),
当m=时,正方形的面积为(2﹣2)2=24﹣8;
②当﹣m2+2m+3=2﹣2m时,解得:m3=2+,m4=2﹣(不符合题意,舍去),
当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8;
综上所述,正方形的面积为24+8或24﹣8.
(3)设BC所在直线解析式为y=kx+b,
把点B(3,0)、C(0,3)代入表达式,得:
,解得: ,
∴直线BC的函数表达式为y=﹣x+3,
设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3),点D(a,﹣a+3),
①点M在对称轴右侧,即a>1,
则|﹣a+3﹣(﹣a2+2a+3)|=a﹣(2﹣a),即|a2﹣3a|=2a﹣2,
若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2a﹣2,
解得:a=或a=<1(舍去);
若a2﹣3a<0,即0≤a≤3,a2﹣3a=2﹣2a,
解得:a=﹣1(舍去)或a=2;
②点M在对称轴右侧,即a<1,
则|﹣a+3﹣(﹣a2+2a+3)|=2﹣a﹣a,即|a2﹣3a|=2﹣2a,
若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2﹣2a,
解得:a=﹣1或a=2(舍);
若a2﹣3a<0,即0≤a≤3,a2﹣3a=2a﹣2,
解得:a=(舍去)或a=;
综上,点M的横坐标为、2、﹣1、.
科目:初中数学 来源: 题型:
【题目】如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是( )
A.△ACE≌△BCD
B.△BGC≌△AFC
C.△DCG≌△ECF
D.△ADB≌△CEA
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:如图1,⊙与直线都相切.不论⊙如何转动,直线之间的距离始终保持不变(等于⊙的半径).我们把具有这一特性的图形称为“等宽曲线”.图2是利用圆的这一特性的例子.将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力就可以推动物体前进.据说,古埃及就是利用只有的方法将巨石推到金字塔顶的.
拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”.如图4,夹在平行线之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变.若直线之间的距离等于,则莱洛三角形的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据媒体公布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,已知3386×1013的结果近似为3430000,用科学记数法把近似数3430000表示成a×10n的形式,则n的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列四个命题中,正确的是( ).
A.平分弦的直径垂直于弦;B.经过同一平面内的三个点一定可以作一个圆;
C.长度相等的两条弧是等弧;D.三角形的外心到这个三角形各顶点的距离相等;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com