精英家教网 > 初中数学 > 题目详情

【题目】解答题
(1)如图1,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,连结BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;

(2)如图2,利用(1)中的方法解决如下问题:在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,求BD的长.

(3)如图3,四边形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα= ,CD=5,AD=12,求BD的长.

【答案】
(1)

证明:如图1,分别以点A、B为圆心,以AB为半径画弧,交于点D,连接AD、BD,再分别以A、C为圆心,以AC为半径画弧,交于点E,连接AE、CE,则△ABD、△ACE就是所求作的等边三角形;

证明:如图1,∵△ABD和△ACE都是等边三角形,

∴AD=AB,AC=AE,∠DAB=∠EAC=60°,

∴∠DAC=∠BAE,

∴△DAC≌△BAE(SAS),

∴BE=CD


(2)

解:如图2,过A作AE⊥AD,使AD=AE=3,连接DE、CE,

由勾股定理得:DE= =3

∴∠EDA=45°,

∵∠ADC=45°,

∴∠EDC=∠EDA+∠ADC=90°,

∵∠ACB=∠ABC=45°,

∴∠CAB=90°,

∴∠CAB+∠DAC=∠EAD+∠DAC,

即∠EAC=∠DAB,

∵AE=AD,AC=AB,

∴△DAB≌△EAC(SAS),

∴EC=BD,

在Rt△DCE中,EC= = =

∴BD=EC=


(3)

解:如图3,作直角三角形DAE,使得∠DAE=90°,

∠EDA=∠ABC,连接EC,

容易得到△DAE∽△BAC,

,即

∵∠DAE=∠BAC=90°,

∴∠DAE+∠DAC=∠BAC+∠DAC,即∠EAC=∠DAB,

∴△EAC∽△DAB,

在△DCE中,∠ADC=∠ACB,

∠EDA=∠ABC,

∴∠EDC=90°,

,AD=12,

∴AE=9,∠DAE=90°,

∴DE= =15,

CE= =5

由△EAC∽△DAB,

BD=


【解析】(1)作图:分别以点A、B为圆心,以AB为半径画弧,交于点D,连接AD、BD;再分别以A、C为圆心,以AC为半径画弧,交于E,连接AE、CE,则△ABD、△ACE就是所求作的等边三角形;
利用等边三角形的性质证明△DAC≌△BAE可以得出结论;(2)如图2,作辅助线后,证明△DAB≌△EAC得:EC=BD,在Rt△DCE中,利用勾股定理求EC的长,则BD=EC= ;(3)如图3,构建直角△DAE,根据同角的三角函数求AE和DE的长,从而可以得到EC的长,利用三角形相似可以得BD的长.
【考点精析】根据题目的已知条件,利用相似三角形的应用的相关知识可以得到问题的答案,需要掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,点C在以AB为直径的半圆上,∠CAB的平分线AD交BC于点D,⊙O经过A、D两点,且圆心O在AB上.
(1)求证:BD是⊙O的切线.
(2)若 ,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=
(1)求⊙O的半径OD;
(2)求证:AE是⊙O的切线;
(3)求图中两部分阴影面积的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一游戏棋盘和一个质地均匀的正四面体骰子(各面依次标有1,2,3,4四个数字).游戏规则是游戏者每掷一次骰子,棋子按着地一面所示的数字前进相应的格数.例如:若棋子位于A处,游戏者所掷骰子着地一面所示数字为3,则棋子由A处前进3个方格到达B处.请用画树形图法(或列表法)求掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是等边三角形ABC内部一个动点,∠APB=120°,⊙O是△APB的外接圆.AP,BP的延长线分别交BC,AC于D,E.
(1)求证:CA,CB是⊙O的切线;
(2)已知AB=6,G在BC上,BG=2,当PG取得最小值时,求PG的长及∠BGP的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)2﹣(﹣4)+3

(2)﹣32÷(﹣2)3

(3)(+)×12

(4)﹣13+[(﹣4)2﹣(1﹣32)×2]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是(
A.∠B=48°
B.∠AED=66°
C.∠A=84°
D.∠B+∠C=96°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明平时喜欢玩“QQ农场游戏,本学期初二年级数学备课组组织了几次数学反馈性测试,小明的数学成绩如下表:

月份x(月)

9

10

11

12


成绩y(分)

90

80

70

60


1)以月份为x轴,成绩为y轴,根据上表提供的数据在下列直角坐标系中描点;

2)观察中所描点的位置关系,照这样的发展趋势,猜想yx之间的函数关系,并求出所猜想的函数表达式;

3)若小明继续沉溺于“QQ农场游戏,照这样的发展趋势,请你估计元月份的期末考试中小明的数学成绩,并用一句话对小明提出一些建议.

查看答案和解析>>

同步练习册答案