精英家教网 > 初中数学 > 题目详情

【题目】已知,点C在以AB为直径的半圆上,∠CAB的平分线AD交BC于点D,⊙O经过A、D两点,且圆心O在AB上.
(1)求证:BD是⊙O的切线.
(2)若 ,求⊙O的面积.

【答案】
(1)解:连接OD.

∵AB为直径,

∴∠ACB=90°,

∵OA=OD,

∴∠ODA=∠OAD,

∵AD平分∠CAB,

∴∠OAD=∠CAD,

∴∠ODA=∠CAD,

∴OD∥AC,

∴∠ODB=∠ACB=90°,

∴BD是⊙O的切线.


(2)解:∵

∴AB=4AC,

∵BC2=AB2﹣AC2

∴15AC2=80,

∴AC=

∴AB=4

设⊙O的半径为r,

∵OD∥AC,

∴△BOD∽△BAC,

,解得:r=

∴πr2=π( 2=

∴⊙O的面积为


【解析】(1)连接OD,求出∠CAD=∠OAD=∠ADO,推出OD∥AC,推出OD⊥CB,根据切线判定推出即可;(2)根据勾股定理求出AC= ,AB=4 .设⊙O的半径为r,证△BOD∽△BAC,得出 ,代入求出r即可.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对切线的判定定理的理解,了解切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】规定:求若干个相同的有理数的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3).类比有理数的乘方,我们把2÷2÷2记作2,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3),读作“-3的圈4次方”一般地,把(a0)记作a,读作“a的圈c次方” .关于除方,下列说法正确的个数是(

①任何非零数的圈2次方都等于1;②对于任何正整数c,1=1;③4=3④负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表: 抽取的200名学生海选成绩分组表

组别

海选成绩x

A组

50≤x<60

B组

60≤x<70

C组

70≤x<80

D组

80≤x<90

E组

90≤x<100

请根据所给信息,解答下列问题:
(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为 , 表示C组扇形的圆心角θ的度数为度;
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=(  )
A.80°
B.70°
C.40°
D.20°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李老师给爱好学习的小兵和小鹏提出这样一个问题:如图1,在ABC中,AB=AC点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CFAB,垂足为F.求证:PD+PE=CF.

小兵的证明思路是:如图2,连接AP,由ABP与ACP面积之和等于ABC的面积可以证得:PD+PE=CF.

小鹏的证明思路是:如图2,过点P作PGCF,垂足为G,先证△GPC≌△ECP,可得:PE=CG,而PD=GF,则PD+PE=CF.

请运用上述中所证明的结论和证明思路完成下列两题:

(1)如图3,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=16,CF=6,求PG+PH的值;

(2)如图4,P是边长为6的等边三角形ABC内任一点,且PD⊥AB,PF⊥AC,PE⊥BC,求PD+PE+PF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABDC中,∠D=B=90°,点OBD的中点,且AO平分∠BAC.

(1)求证:CO平分∠ACD;

(2)求证:OAOC;

(3)求证:AB+CD=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.

1)小李考了60分,那么小李答对了多少道题?

2)小王获得二等奖(7585分),请你算算小王答对了几道题?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:

(1)当t=3秒时,这时,P,Q两点之间的距离是多少?

(2)若△CPQ的面积为S,求S关于t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题
(1)如图1,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,连结BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;

(2)如图2,利用(1)中的方法解决如下问题:在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,求BD的长.

(3)如图3,四边形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα= ,CD=5,AD=12,求BD的长.

查看答案和解析>>

同步练习册答案