精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABDC中,∠D=B=90°,点OBD的中点,且AO平分∠BAC.

(1)求证:CO平分∠ACD;

(2)求证:OAOC;

(3)求证:AB+CD=AC.

【答案】(1)见解析;(2)见解析;(3)见解析

【解析】

试题(1)过点OOEACE,根据角平分线上的点到角的两边的距离相等可得OB=OE,从而求出OE=OD,然后根据到角的两边距离相等的点在角的平分线上证明;
(2)利用“HL”证明ABOAEO全等,根据全等三角形对应角相等可得∠AOB=AOE,同理求出∠COD=COE,然后求出∠AOC=90°,再根据垂直的定义即可证明;
(3)根据全等三角形对应边相等可得AB=AE,CD=CE,然后证明即可.

试题解析:

(1)过点OOEACE,
∵∠ABD=90゜,OA平分∠BAC,
OB=OE,
∵点OBD的中点,
OB=OD,
OE=OD,
OC平分∠ACD;
(2)在RtABORtAEO中,

RtABORtAEO(HL),
∴∠AOB=AOE,
同理求出∠COD=COE,
∴∠AOC=AOE+COE= ×180°=90°,
OAOC;
(3)RtABORtAEO,
AB=AE,
同理可得CD=CE,
AC=AE+CE,
AB+CD=AC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ACB=90°,AB的垂直平分线DEBC的延长线于F,若∠F=30°,DE=1,EF的长是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是(  )

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=ax+b(a≠0)与二次函数ax2+2x+b(a≠0)在同一直角坐标系中的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点C在以AB为直径的半圆上,∠CAB的平分线AD交BC于点D,⊙O经过A、D两点,且圆心O在AB上.
(1)求证:BD是⊙O的切线.
(2)若 ,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正ABC和正CDE,ADBE交于点O,ADBC交与点P,BECD交于点Q,连接PQ.

求证:(1)AD=BE

(2)APC≌△BQC

(3)PCQ是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数的图象与反比例函数的图象都经过点P(2,3),点D是正比例函数图象上的一点,过点Dy轴的垂线,垂足分别Q,DQ交反比例函数的图象于点A,过点Ax轴的垂线,垂足为B,AB交正比例函数的图于点E.

(1)求正比例函数解析式、反比例函数解析式.

(2)当点D的纵坐标为9时,求:点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+b的图象与反比例函数y= 的图象交于A(﹣2,m),B(4,﹣2)两点,与x轴交于C点,过A作AD⊥x轴于D.
(1)求这两个函数的解析式:
(2)求△ADC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)2﹣(﹣4)+3

(2)﹣32÷(﹣2)3

(3)(+)×12

(4)﹣13+[(﹣4)2﹣(1﹣32)×2]

查看答案和解析>>

同步练习册答案