【题目】计算:
(1)2﹣(﹣4)+3
(2)﹣32÷(﹣2)3
(3)(﹣+)×12
(4)﹣13+[(﹣4)2﹣(1﹣32)×2]
【答案】(1)9;(2)4;(3)7;(4)31
【解析】
(1)先化简,再计算加减法即可求解;
(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;
(3)根据乘法分配律简便计算;
(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
(1)2﹣(﹣4)+3=2+4+3=9;
(2)﹣32÷(﹣2)3=﹣32÷(﹣8)=4;
(3)(﹣+)×12=×12﹣×12+×12=6﹣8+9=7;
(4)﹣13+[(﹣4)2﹣(1﹣32)×2]
=﹣1+[16﹣(1﹣9)×2]
=﹣1+(16+8×2)
=﹣1+(16+16)
=﹣1+32
=31.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABDC中,∠D=∠B=90°,点O为BD的中点,且AO平分∠BAC.
(1)求证:CO平分∠ACD;
(2)求证:OA⊥OC;
(3)求证:AB+CD=AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题:
(1)分别求出y甲,y乙与x的函数关系式;
(2)现厂家分配该商品给甲、乙两商场共计1200件,当甲、乙商场售完这批商品,厂家可获得总利润为1080元,问厂家如何分配这批商品?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.
(1)求证:四边形ABDE是平行四边形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解答题
(1)如图1,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,连结BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;
(2)如图2,利用(1)中的方法解决如下问题:在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,求BD的长.
(3)如图3,四边形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα= ,CD=5,AD=12,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,射线OP过Rt△ABC的边AC、AB的中点M、N,AC=4cm,BC=4 cm,OM=3cm.射线OP上有一动点Q从点O出发,沿射线OP以每秒1cm的速度向右移动,以Q为圆心,QM为半径的圆,经过t秒与BC、AB中的一边所在的直线相切,请写出t的所有可能值(单位:秒)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点M、N分别为ABCD的边CD、AB的中点,连接AM、CN.
(1)证明:AM=CN;
(2)过点B作BH⊥AM于点H,交CN于点E,连接CH,判断线段CB、CH的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(0,4),B(2,0).
(1)求直线AB的函数解析式;
(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.
①求线段AC的长;(用含m的式子表示)
②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com