【题目】如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是 .
【答案】
【解析】解:∵四边形ABCD为矩形, ∴∠A=90°,
在Rt△ABD中,AB=4,AD=3,
∴BD= =5,
∵折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,
∴DA′=DA=3,EA′=EA,∠DA′E=∠A=90°,
∴BA′=BD﹣DA′=5﹣3=2,
设A′E=x,则EA=x,BE=4﹣x,
在Rt△BEA′中,
∵A′E2+BA′2=BE2 ,
∴x2+22=(4﹣x)2 , 解得x= ,
即A′E的长为 .
故答案为 .
由矩形的性质得∠A=90°,在Rt△ABD中,根据勾股定理计算出BD=5,再根据折叠的性质得DA′=DA=3,EA′=EA,∠DA′E=∠A=90°,则BA′=BD﹣DA′=2,设A′E=x,则EA=x,BE=4﹣x,在Rt△BEA′中,根据勾股定理得到x2+22=(4﹣x)2 , 然后解方程即可.
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:
(1)当t=3秒时,这时,P,Q两点之间的距离是多少?
(2)若△CPQ的面积为S,求S关于t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解答题
(1)如图1,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,连结BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;
(2)如图2,利用(1)中的方法解决如下问题:在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,求BD的长.
(3)如图3,四边形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα= ,CD=5,AD=12,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点M、N分别为ABCD的边CD、AB的中点,连接AM、CN.
(1)证明:AM=CN;
(2)过点B作BH⊥AM于点H,交CN于点E,连接CH,判断线段CB、CH的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).
(1)若(1,b)是“相伴数对”,求b的值;
(2)若(m,n)是“相伴数对”,其中m≠0,求;
(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了平面直角坐标系及格点△AOB.(顶点是网格线的交点)
(1)画出将△AOB沿y轴翻折得到的△AOB1,则点B1的坐标为_________.
(2)画出将△AOB沿射线AB1方向平移2.5个单位得到的△A2O2B2,则点A2的坐标为_______.
(3)请求出△AB1B2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数 ,下列结论错误的是( )
A.图象经过点(1,1)
B.当x<0时,y随着x的增大而增大
C.当x>1时,0<y<1
D.图象在第一、三象限
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com