【题目】如图,将等边沿翻折得,,点为直线上的一个动点,连接,将线段绕点顺时针旋转的角度后得到对应的线段(即),交于点,则下列结论:①;②;③当为线段的中点时,则;④四边形的面积为;⑤连接、,当的长度最小时,则的面积为.则说法正确的有________(只填写序号)
【答案】①②
【解析】
由等边三角形的性质和折叠的性质,得到四边形ABCD是菱形,则可以判断①、②;当点E时AD中点时,可得△CPF是直角三角形,CE=CF=3,得到,可以判断③;求出对角线的长度,然后求出菱形的面积,可以判断④;当点E与点A重合时,DF的长度最小,此时四边形ACFD是菱形,求出对角线EF和CD的长度,求出面积,可以判断⑤;即可得到答案.
解:根据题意,将等边沿翻折得,如图:
∴,∠BCD=120°,
∴四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO;故①、②正确;
∴,
∴,
∴,
∴菱形ABCD的面积=,故④错误;
当点E时AD中点时,CE⊥AD,
∴DE=,∠DCE=30°,
∴,
∵,
∠PCF=120°,∠F=30°,
∴,故③错误;
当点E与点A重合时,DF的长度最小,如图:
∵AD∥CF,AD=AC=CF,
∴四边形ACFD是菱形,
∴CD⊥EF,CD=,,
∴;故⑤错误;
∴说法正确的有:①②;
故答案为:①②.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC边的中点,分别过B、C做射线AD的垂线,垂足分别为E、F,连接BF、CE.
(1)求证:四边形BECF是平行四边形;
(2)我们知道S△ABD=S△ACD,若AF=FD,在不添加辅助线的条件下,直接写出与△ABD、△ACD面积相等的所有三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形的一条边长为x,周长的一半为y,定义(x,y)为这个矩形的坐标。如图2,在平面直角坐标系中,直线x=1,y=3将第一象限划分成4个区域,已知矩形1的坐标的对应点A落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中,则下面叙述中正确的是( )
A. 点A的横坐标有可能大于3
B. 矩形1是正方形时,点A位于区域②
C. 当点A沿双曲线向上移动时,矩形1的面积减小
D. 当点A位于区域①时,矩形1可能和矩形2全等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧;是以点C为圆心,CA2为半径的圆弧;是以点A为圆心,AA3为半径的圆弧,它们所对的圆心角都等于90°。继续以点B、O、C、A为圆心按上述做法得到的曲线AA1A2A3A4A5……称为“正方形的渐开线”,那么点A5的坐标是________,点A2018的坐标是_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2)、B(0,4)、C(0,2),
(1)画出△ABC关于点C成中心对称的△A1B1C;
(2)平移△ABC:若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;
(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某“数学兴趣小组”根据学习函数的经验,对函数的图象和性质进行了探究,探究过程如下,请补充完整:
(1)自变量x的取值范围是全体实数,x与y的几组对应数值如下表:
x | … | -3 | - | -2 | -1 | 0 | 1 | 2 | 3 | … | |
y | … | -2 | - | m | 2 | 1 | 2 | 1 | - | -2 | … |
其中m=____________;
(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(3)根据函数图象
①写出该函数的一条性质_______________;
②直线经过点(-l,2),若关于x的方程有4个互不相等的实数根,则b的取值范围是__________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】人类的血型一般可分为A,B,AB,O型四种,宁波市中心血战2015年共有8万人无偿献血,血战统计人员由电脑随机选出20人,血型分别是:
O,A,O,B,O,A,A,AB,A,O,O,B,AB,B,O,A,O,B,O,A.
(1)请设计统计表分类统计这20人各类血型人数;
(2)若每位献血者平均献血200毫升,一年中宁波市各医院O型血用血量约为6×106毫米,请你估计2015年这8万人所献的O型血是否够用?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 在平面直角坐标系xOy中,O为坐标原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.
(1)若四边形OABC为长方形,如图1,
①求点B的坐标;
②若BQ=BP,且点B1落在AC上,求点B1的坐标;
(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC,边OC分别交于点E,点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标(用含m的代数式表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com