精英家教网 > 初中数学 > 题目详情

【题目】(2016广西柳州市)如图,ABABC外接圆⊙O的直径,点P是线段CA延长线上一点,点E在圆上且满足=PAPC,连接CEAEOEOECA于点D

(1)求证:PAE∽△PEC

(2)求证:PE为⊙O的切线;

(3)若∠B=30°,AP=AC,求证:DO=DP

【答案】1)证明见解析;(2)证明见解析;(3)证明见解析.

【解析】

1)利用两边对应成比例,夹角相等,两三角形相似即可;
2)连接BE,转化出∠OEB=PCE,又由相似得出∠PEA=PCE,从而用直径所对的圆周角是直角,转化出∠OEP=90°即可;
3)构造全等三角形,先找出ODPA的关系,再用等积式找出PEPA的关系,从而判断出OM=PE,得出△ODM≌△PDE即可.

(1)∵=PAPC

∵∠APE=∠EPC

∴△PAE∽△PEC

(2)如图1,连接BE

∴∠OBE=∠OEB

∵∠OBE=∠PCE

∴∠OEB=∠PCE

∵△PAE∽△PEC

∴∠PEA=∠PCE

∴∠PEA=∠OEB

AB为直径,∴∠AEB=90°,

∴∠OEB+∠OEA=90°,

∵∠PEA+∠OEA=90°,

∴∠OEP=90°,

EO上,

PEO的切线;

(3)如图2,过点OODACM

AM=AC

BCAC

ODBC

∵∠ABC=30°,

∴∠AOD=30°,

OD=AM=AC

AP=AC

OD=AP

PC=AC+AP=2AP+AP=3AP

=PA×PC=PA×3PA

PE=PA

OD=PE

∵∠PED=∠OMD=90°,∠ODM=∠PDE

∴△ODM≌△PDE

OD=DP

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题.

1)接受问卷调查的学生共有   名,扇形统计图中“基本了解”部分所对应扇形的圆心角为   ;请补全条形统计图;

2)若该校共有学生1200人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解””和“基本了解”程度的总人数;

3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形中,BC=3,动点出发,以每秒1个单位的速度,沿射线方向移动,作关于直线的对称,设点的运动时间为

1)若

①如图2,当点B’落在AC上时,显然PCB’是直角三角形,求此时t的值

②是否存在异于图2的时刻,使得PCB’是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由

2)当P点不与C点重合时,若直线PB’与直线CD相交于点M,且当t3时存在某一时刻有结论∠PAM=45°成立,试探究:对于t3的任意时刻,结论∠PAM=45°是否总是成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+2x+3,截取该函数图象在0≤x≤4间的部分记为图象G,设经过点(0t)且平行于x轴的直线为l,将图象G在直线l下方的部分沿直线l翻折,图象G在直线上方的部分不变,得到一个新函数的图象M,若函数M的最大值与最小值的差不大于5,则t的取值范围是(  )

A.1≤t≤0B.1≤tC.D.t1t≥0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形ABCD,图中阴影部分的面积为( ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.

(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?

(2)李明认为这两个正方形的面积之和不可能等于48 cm2,你认为他的说法正确吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,,以为坐标原点,以所在的直线为轴建立平面直角坐标系,如图.按以下步骤作图:①分别以点为圆心,以大于的长为半径作弧,两弧相交于点②作直线于点.则点的坐标为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O直径,BC为⊙O切线,连接A、C两点,交⊙O于点D,BE=CE,连接DE,OE.

(1)判断DE与⊙O的位置关系,并说明理由;

(2)求证:BC2=CD2OE;

(3)若cos∠BAD=,BE=6,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片,点边上,将沿折叠,点落在点处,分别交于点,且,则的值为(

A.B.C.D.

查看答案和解析>>

同步练习册答案