精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若KG2=KDGE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE= ,AK=2 ,求FG的长.

【答案】
(1)解:如答图1,连接OG.

∵EG为切线,∴∠KGE+∠OGA=90°,

∵CD⊥AB,∴∠AKH+∠OAG=90°,

又OA=OG,∴∠OGA=∠OAG,

∴∠KGE=∠AKH=∠GKE,

∴KE=GE.


(2)解:AC∥EF,理由为:

连接GD,如答图2所示.

∵KG2=KDGE,即

,又∠KGE=∠GKE,

∴△GKD∽△EGK,

∴∠E=∠AGD,又∠C=∠AGD,

∴∠E=∠C,

∴AC∥EF;


(3)解:连接OG,OC,如答图3所示.

sinE=sin∠ACH= ,设AH=3t,则AC=5t,CH=4t,

∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK﹣CH=t.

在Rt△AHK中,根据勾股定理得AH2+HK2=AK2

即(3t)2+t2=(2 2,解得t=

设⊙O半径为r,在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t,

由勾股定理得:OH2+CH2=OC2

即(r﹣3t)2+(4t)2=r2,解得r= t=

∵EF为切线,∴△OGF为直角三角形,

在Rt△OGF中,OG=r= ,tan∠OFG=tan∠CAH= =

∴FG= = =


【解析】(1)如答图1,连接OG.根据切线性质及CD⊥AB,可以推出连接∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如答图2所示,连接GD,由∠KGE=∠GKE,及KG2=KDGE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如答图3所示,连接OG,OC.首先求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:
第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);
第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;
第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.
(注:裁剪和拼图过程均无缝且不重叠)
则拼成的这个四边形纸片的周长的最小值为cm,最大值为cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD垂直平分线与AB的交点,DE交AC于点F.求证:点E在AF的垂直平分线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平面直角坐标系中有一点.

(1)点My轴的距离为1时,M的坐标?

(2)点MN//x轴时,M的坐标?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次机器人测试中,要求机器人从A出发到达B处.如图1,已知点A在O的正西方600cm处,B在O的正北方300cm处,且机器人在射线AO及其右侧(AO下方)区域的速度为20cm/秒,在射线AO的左侧(AO上方)区域的速度为10cm/秒.
(参考数据: ≈1.414, ≈1.732, ≈2.236, ≈2.449)
(1)分别求机器人沿A→O→B路线和沿A→B路线到达B处所用的时间(精确到秒);
(2)若∠OCB=45°,求机器人沿A→C→B路线到达B处所用的时间(精确到秒);
(3)如图2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.试说明:从A出发到达B处,机器人沿A→P→B路线行进所用时间最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】y轴上,位于原点的下方,且距离原点3个单位长度的点的坐标是_______

查看答案和解析>>

同步练习册答案