【题目】某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长为6m、8m.现要将其扩建成等腰三角形,且扩充部分是以8m为直角边的直角三角形.求扩建后的等腰三角形花圃的周长.
【答案】扩建后的等腰三角形花圃的周长是32m或 20+4m或 m.
【解析】
先利用勾股定理求得AB=10m,再根据题意与等腰三角形的定义分为当AB=AD时,当AB=BD时,当DA=DB时三种情况,然后分别求出△ABD的周长即可
解:在Rt△ABC中,
∵AC=8m,BC=6m,
∴AB=10m,
(1)如图1,当AB=AD时,CD=6m,
△ABD的周长为10m+10m+6m+6m=32m;
(2)如图2,当AB=BD时,CD=4m,AD=4m,
△ABD的周长是10m+10m+4m=(20+4)m;
(3)如图3,当DA=DB时,设AD=x,则CD=x﹣6,
则x2=(x﹣6)2+82,
∴x=,
∴△ABD的周长是10m+m+m=m,
答:扩建后的等腰三角形花圃的周长是32m或 20+4m或m.
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上原点为0,点B表示的数为2,A在B的右边,且A与B的距离为5,,动点P从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时动点Q从点A出发,以每秒4个单位长度的速度向左匀速运动。设运动时间为t秒(t>0).
(1)写出数轴上点A表示的数 ,点P表示的数 (用含t的代数式表示),点Q表示的数(用含t的代数式表示);
(2)问点P与点Q何时到点O的距离相等?
(3)若点D是数轴上一点,点D表示的数是x,是否存在x,使得?如果存在,请直接写出x的值;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:
销售时段 | 销售型号 | 销售收入 | |
种型号 | 种型号 | ||
第一周 | 台 | 台 | 元 |
第二周 | 台 | 台 | 元 |
(1)求、两种型号的电风扇的销售单价;
(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?
(3)在(2)的条件下商城销售完这台电风能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在3×3的方格中,点A、B、C、D、E、F都是格点,从A、D、E、F四点中任意取一点,以所取点及B、C为顶点画三角形,所画三角形是直角三角形的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2﹣3x+k与x轴交于A、B两点,与y轴交于点C(0,﹣4).
(1)k=;
(2)点A的坐标为 , B的坐标为;
(3)设抛物线y=x2﹣3x+k的顶点为M,求四边形ABMC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若 ,求⊙O的半径和线段PB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形,边长为4,点F在AB边上,E为射线AD上一点,正方形ABCD沿直线EF折叠,点A落在G处,已知点G恰好在以AB为直径的圆上,则CG的最小值等于( )
A.0
B.2
C.4﹣2
D.2 ﹣2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com