精英家教网 > 初中数学 > 题目详情

【题目】如图所示,ABC内接于⊙OAB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AECE,连接CD

1)求证:DC=BC

2)若AB=5AC=4,求tanDCE的值.

【答案】1)详见解析;(2

【解析】

1)连接OC,求证DC=BC可以证明∠CAD=BAC,进而证明
2AB=5AC=4,根据勾股定理就可以得到BC=3,易证ACE∽△ABC,求出ECED即可.

1)证明:连接OC·

OAOC

∴∠OAC=∠OCA

CE是⊙O的切线

∴∠OCE90°

AECE

∴∠AEC=∠OCE90°

OCAE

∴∠OCA=∠CAD ∴∠CAD=∠BAC

DCBC

2)∵AB是⊙O的直径 ∴∠ACB90°

·

∵∠CAE=∠BAC AEC=∠ACB90°

∴△ACE∽△ABC

,∴

DCBC3

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC 中,点 D 为边 BC 的点,点 EF 分别是边 ABAC 上两点,且 EFBC,若 AEEBmBDDCn,则( )

A.m1n1,则 2SAEFSABDB.m1n1,则 2SAEFSABD

C.m1n1,则 2SAEFSABDD.m1n1,则 2SAEFSABD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具用品商店销售A、B两种款式文具盒,已知购进1A款文具盒比B款文具盒便宜5元,且用300元购入A款文具盒的数量比购入B款文具盒的数量多5.

(1)购进一个A款文具盒、一个B款文具盒各需多少元?

(2)若A款文具盒与B款文具盒的售价分别是20元和30元,现该文具用品商店计一划用不超过1000元购入共计60A、B两种款式的文具盒,且全部售完,问如何安排进货才能使销售利润最大?并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是四边形ABCD的对角线,ABBC6,∠ABC60°,点G1G2分别是△ABD和△DBC的重心,则点G1G2间的距离为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角△ABC中,BC10AC11,△ABC的面积为33,点P是射线CA上一动点,以BP为直径作圆交线段AC于点E,交射线BA于点D,交射线CB于点F

1)当点P在线段AC上时,若点E中点,求BP的长.

2)连结EF,若△CEF为等腰三角形,求所有满足条件的BP值.

3)将DE绕点D顺时针旋转90°,当点E的对应点E'恰好落在BC上时,记△DBE'的面积S1,△DPE的面积S2,则的值为   .(直接写出答案即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E F分别为边ABCD的中点,BD是对角线.过点有作AGDBCB的延长线于点G.

(1)求证:△ADE≌△CBF

(2)若∠G=90° ,求证:四边形DEBF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以ABCBCAC为腰向外作等腰直角EBC和等腰直角DAC,连结DE,且DEBCEBBC6,四边形EBCD的面积为24,则AB的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的边长为2,点D是射线BC上的一个动点,以AD为边向右作等边△ADE,连结CE

1)求证:△ABD≌△ACE

2)若CE,求△ACD的面积;

3)若△ACE是直角三角形,则BD的长是   (直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,有一个由六个边长为1的正方形组成的图案,其中点AB的坐标分别为(3,5)(6,1).若过原点的直线l将这个图案分成面积相等的两部分,则直线l的函数解析式为_____

查看答案和解析>>

同步练习册答案