【题目】已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.
(1)如图1,当点P与点Q重合时,AE与BF的位置关系,QE与QF的数量关系.
(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;
(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.
【答案】解:(1)如图1,
当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF,
理由是:∵Q为AB的中点,
∴AQ=BQ,
∵AE⊥CQ,BF⊥CQ,
∴AE∥BF,∠AEQ=∠BFQ=90°,
在△AEQ和△BFQ中
∴△AEQ≌△BFQ,
∴QE=QF,
故答案为:AE∥BF,QE=QF;
(2)
QE=QF,
证明:延长EQ交BF于D,
∵由(1)知:AE∥BF,
∴∠AEQ=∠BDQ,
在△AEQ和△BDQ中
∴△AEQ≌△BDQ,
∴EQ=DQ,
∵∠BFE=90°,
∴QE=QF;,
(3)当点P在线段BA(或AB)的延长线上时,此时(2)中的结论成立,
证明:延长EQ交FB于D,如图3,
∵由(1)知:AE∥BF,
∴∠AEQ=∠BDQ,
在△AEQ和△BDQ中
∴△AEQ≌△BDQ,
∴EQ=DQ,
∵∠BFE=90°,
∴QE=QF.
【解析】(1)根据AAS推出△AEQ≌△BFQ,推出AE=BF即可;
(2)延长EQ交BF于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可;
(3)延长EQ交FB于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可.
科目:初中数学 来源: 题型:
【题目】陈明同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元,后因人数增加到原定人数的2倍,享受优惠后,一共只需480元,参加活动的每个同学平均分摊的费用比原计划少4元,求原定的人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC, ∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=132°,∠BGC=118°,则∠A的度数为( )
A.65°
B.66°
C.70°
D.78°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.
其中说法正确的是( )
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张长方形纸片与一张直角三角形纸片(∠EFG=90°)按如图所示的位置摆放,
使直角三角形纸片的一个顶点E恰好落在长方形纸片的一边AB上,已知∠BEF=21°,则
∠CMF= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连结BD,DP,BD与CF相交于点H.给出下列结论: ①△ABE≌△DCF;②△DPH是等腰三角形;③PF= AB;④ = .
其中正确结论的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com