A. | B. | C. | D. |
分析 根据各选项中直线经过的象限可得出a、b的符号,再依此找出二次函数图象的开口、对称轴以及顶点坐标,对照图象即可得出结论.
解答 解:A、∵直线y=ax+b经过第一、二、三象限,
∴a>0,b>0,
∴抛物线y=ax2+b开口向上,对称轴为y轴,顶点为(0,b),
∴该选项图象符合题意;
B、∵直线y=ax+b经过第一、二、四象限,
∴a<0,b>0,
∴抛物线y=ax2+b开口向下,对称轴为y轴,顶点为(0,b),
∴该选项图象不符合题意;
C、∵直线y=ax+b与抛物线y=ax2+b的交点坐标为(0,b),
∴该选项图象不符合题意;
D、∵直线y=ax+b经过第一、二、三象限,
∴a>0,b>0,
∴抛物线y=ax2+b开口向上,对称轴为y轴,顶点为(0,b),
∴该选项图象不符合题意.
故选A.
点评 本题考查了二次函数的图象以及一次函数图象与系数的关系,逐一分析四个选项中图象的正误是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{3}{2}$ | C. | $\frac{9}{4}$ | D. | 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com