【题目】如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.
(1)求证:PB是⊙O的切线;
(2)若OC=3,AC=4,求PB的长.
【答案】(1)见解析;(2)PB=
【解析】
(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OB,证明OB⊥PE即可.
(2)先证明△ACO∽△PAO,然后利用相似三角形的性质求出PO,再利用勾股定理求出PA,即可得到PB的长度.
(1)证明:连接OB,如图:
∵PA与⊙O相切于点A,
∴∠OAP=90°
∵PO⊥AB,
∴AC=BC,
∴PA=PB,
在△PAO和△PBO中
∴△PAO≌△PBO
∴∠OBP=∠OAP=90°
∴PB是⊙O的切线.
(2)在Rt△ACO中,OC=3,AC=4
∴AO=5
在Rt△ACO与Rt△PAO中,
∵∠AOC=∠POA,∠PAO=∠ACO=90°
∴△ACO∽△PAO
∴
∴PO=,
由勾股定理,得:
,
∴PB=PA=.
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,AC=,∠ACB=45°,tanB=3,过点A作BC的平行线,与过C且垂直于BC的直线交于点D,一个动点P从B出发,以每秒1个单位长度的速度沿BC方向运动,过点P作PE⊥BC,交折线BA-AD于点E,以PE为斜边向右作等腰直角三角形PEF,设点P的运动时间为t秒(t>0).
(1)当点F恰好落在CD上时,此时t的值为 ;
(2)若P与C重合时运动结束,在整个运动过程中,设等腰直角三角形PEF与四边形ABCD重叠部分的面积为S,请求出S与t之间的函数关系式,并写出自变量t的取值范围;
(3)如图2,在点P开始运动时,BC上另一点Q同时从点C出发,以每秒2个单位长度沿CB方向运动,当Q到达B点时停止运动,同时点P也停止运动,过Q作QM⊥BC交射线CA于点M,以QM为斜边向左作等腰直角三角形QMN,若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一直线上,请直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=x+b与x轴、y轴分别交于A,B两点,与反比例函数y2=﹣(x<0)的图象交于C,D两点,点C的横坐标为﹣1,过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F.下列说法正确的是( )
A.b=5
B.BC=AD
C.五边形CDFOE的面积为35
D.当x<﹣2时,y1>y2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数图象的对称轴为直线,且,顶点为.
(1)求的值;
(2)求点的坐标(用含的式子表示);
(3)已知点,,若函数的图象与线段恰有一个公共点,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x万元.根据题意,列方程正确的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位及养老建筑不断增加.
(1)该市的养老床位数从2017年底的2万个增长到2019年底的2.88万个,求该市这两年(从2017年底到2019年底)拥有的养老床位数的平均年增长率;
(2)该市某社区今年准备新建一养老中心,如果计划赡养200名老人,建筑投入平均5万元/人,且计划赡养的老人每增加5人,建筑投入平均减少1000元/人,那么新建该养老中心需申报的最高建筑投入是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.
(1)若轮船照此速度与航向航向,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由(参考数据: ≈1.4, ≈1.7).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,抛物线与轴交于两点(点在点左侧),与轴交于点,顶点为.
(1)如图,直线下方抛物线上的一个动点(不与点重合),过点作于点,当最大时,点为线段一点(不与点重合),当的值最小时,求点的坐标;
(2)将沿直线翻折得,再将绕着点顺时针旋转得,在旋转过程中直线与直线相交于点,与轴相交于点,当是等腰三角形时,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com