精英家教网 > 初中数学 > 题目详情
13.先化简再求值
(1)-2x2-$\frac{1}{2}$[3y2-2(x2-y2)+6],其中x=-1,y=2.
(2)$\frac{1}{2}$x-2(x-$\frac{1}{3}$y2)+($\frac{3}{2}$x+$\frac{1}{3}$y2),其中x,y满足|x-6|+(y+2)2=0.

分析 (1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;
(2)原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.

解答 解:(1)原式=-2x2-$\frac{3}{2}$y2+x2-y2-3=-x2-$\frac{5}{2}$y2-3,
当x=-1,y=-2时,原式=-1-10-3=-14;
(2)原式=$\frac{1}{2}$x-2x+$\frac{2}{3}$y2+$\frac{3}{2}$x+$\frac{1}{3}$y2=y2
∵|x-6|+(y+2)2=0,
∴x=6,y=-2,
则原式=4.

点评 此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.计算($\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$)-2×($\frac{1}{2}$-$\frac{1}{6}$-$\frac{1}{7}$-$\frac{1}{8}$)-3×($\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$-$\frac{1}{9}$)的结果是-$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,后求值:[(x2+y2)-(x-y)2+2y(x-y)]÷4y,其中2x-y=18.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,求△DCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知y1=-x+5,y2=2x-1
(1)当x取何值时,y1=y2
(2)当x取何值时,y1的值比y2的值的3倍大1;
(3)先填表,后回答:
x-3-2-101234
y1
y2
根据所填表格,回答问题:随着x的值增大,y1的值逐渐减小;y2的值逐渐增大.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则(  )
A.这个球一定是黑球
B.摸到黑球、白球的可能性的大小一样
C.这个球可能是白球
D.事先能确定摸到什么颜色的球

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6
(1)一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率
(2)随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列各点中,在函数y=$\frac{2}{x}$的图象上的点是(  )
A.(1,0.5)B.(2,-1)C.(-1,-2)D.(-2,1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在Rt△ABC中,∠ACB=90°,点D是斜边AB上的中点,AC=6cm,BC=4cm,一动点P从点A出发,沿A→C→B的路线以1cm/s的速度移动.设△APD的面积为y(cm2),则y关于点P的运动时间x(s)的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案