精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是O的直径,C是O上一点,ODBC于点D,过点C作O的切线,交OD的延长线于点E,连接BE.

(1)求证:BE与O相切;

(2)设OE交O于点F,若DF=1,BC=2,求阴影部分的面积.

【答案】(1)证明见解析;(2S阴影=4π

【解析】试题分析:(1)连接OC,如图,利用切线的性质得∠OCE=90°,再根据垂径定理得到CD=BD,则OD垂中平分BC,所以EC=EB,接着证明△OCE≌△OBE得到∠OBE=∠OCE=90°,然后根据切线的判定定理得到结论;

2)设⊙O的半径为r,则OD=r﹣1,利用勾股定理得到(r﹣12+2=r2,解得r=2,再利用三角函数得到∠BOD=60°,则∠BOC=2∠BOD=120°,接着计算出BE=OB=2

然后根据三角形面积公式和扇形的面积公式,利用阴影部分的面积=2SOBE﹣S扇形BOC进行计算即可.

试题解析:(1)证明:连接OC,如图,

∵CE为切线,

∴OC⊥CE

∴∠OCE=90°

∵OD⊥BC

∴CD=BD

OD垂中平分BC

∴EC=EB

△OCE△OBE

∴△OCE≌△OBE

∴∠OBE=∠OCE=90°

∴OB⊥BE

∴BE⊙O相切;

2)解:设⊙O的半径为r,则OD=r﹣1

Rt△OBD中,BD=CD=BC=

r﹣12+2=r2,解得r=2

∵tan∠BOD==

∴∠BOD=60°

∴∠BOC=2∠BOD=120°

Rt△OBE中,BE=OB=2

阴影部分的面积=S四边形OBEC﹣S扇形BOC

=2SOBE﹣S扇形BOC

=2××2×2

=4π

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为开展全科大阅读活动,学校花费了3400元在书店购买了40套古典文学书籍和20套现代文学书籍,每套现代文学书籍比每套古典文学书籍多花20.

1)求每套古典文学习书籍和现代文学书籍分别是多少元?

2)为满足学生的阅读需求,学校计划用不超过2500元再次购买古典文学和现代文学书籍共40套,经市场调查得知,每套古典文学书籍价格上浮了20%,每套现代文学书籍价格下调了10%,学校最多能购买多少套现代文学书籍?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形网格中(网格中的每个小正方形边长是1),ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:

1)作出△ABC绕点A逆时针旋转90°的AB1C1

2)作出AB1C1关于原点O成中心对称的A1B2C2

3)请直接写出以A1B2C2为顶点的平行四边形的第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了庆祝即将到来的2017年元旦,某校举行了书法比赛,赛后整理参赛同学的成绩,并制作成图表如下:

分数段

频数

频率

60≤x<70

30

0.15

70≤x<80

m

0.45

80≤x<90

60

n

90≤x≤100

20

0.1

请根据以上图表提供的信息,解答下列问题:

(1)这次共调查了   名学生;表中的数m=   ,n=   

(2)请在图中补全频数分布直方图;

(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是   

(4)如果比赛成绩在80分以上(含80分)可获得奖励,那么获奖概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,二次函数y=ax2x+c的图象经过点A01),B3 ),A点在y轴上,过点BBCx轴,垂足为点C

(1)求直线AB的解析式和二次函数的解析式;

(2)点N是二次函数图象上一点(点NAB上方),过NNP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;

(3)点N是二次函数图象上一点(点NAB上方),是否存在点N,使得BMNC相互垂直平分?若存在,求出所有满足条件的N点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+ca≠0)的图象过点C01),顶点为Q23),点Dx轴正半轴上,且OD=OC

1)求直线CD的解析式;

2)求抛物线的解析式;

3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:CEQ∽△CDO

4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国水资源比较缺乏,人均水量约为世界人均水量的四分之一,其中西北地区缺水尤为严重.一村民为了蓄水,他把一块矩形白铁皮四个角各切去一个同样大小的小正方形后制作一个无盖水箱用于接雨水.已知白铁皮的长为280cm,宽为160cm(如图).

(1)若水箱的底面积为16000cm2,请求出切去的小正方形边长;

(2)对(1)中的水箱,若盛满水,这时水量是多少升?(注:1升水=1000cm3水)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将等腰△ABC绕顶点B逆时针方向旋转40°得到△A1BC1ABA1C1相交于点D,ACA1C1BC1分别交于点EF.

求证:ΔBCF≌ΔBA1D.

当∠C=40°时,请你证明四边形A1BCE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD⊥BCBE⊥AC,垂足分别为DEADBE相交于点F

1)求证:△ACD∽△BFD

2)当tan∠ABD=1AC=3时,求BF的长.

查看答案和解析>>

同步练习册答案