12£®Èçͼ¢Ù£¬ÔÚËıßÐÎAOBCÖУ¬AC¡ÎOB£¬Èô¶¯µãP´ÓµãO´¦ÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòBµãÆ½ÒÆ£¬¹ýµãP×÷´¹Ö±ÓÚOBµÄÖ±Ïߣ¬ÉèÖ±Ïßɨ¹ýµÄÒõÓ°²¿·ÖµÄÃæ»ýΪS£¬Ô˶¯Ê±¼äΪx£¨t£©£¬ÒÑÖªSÓëxµÄº¯Êý¹ØÏµ¿ÉÓÃÈçͼ¢ÚµÄº¯ÊýͼÏó±íʾ£®
£¨1£©Çó³öͼ¢ÚÖÐa¡¢bµÄÖµ£»
£¨2£©Á¬½ÓAP£¬ÔÚÔ˶¯¹ý³ÌÖÐÊÇ·ñ´æÔÚij¸öʱ¼äxʹµÃ¡÷OAPΪµÈÑüÈý½ÇÐΣ¿Èç¹û´æÔÚ£¬Çó³ö´ËʱxµÄÖµ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Èçͼ¢ÙÖУ¬×÷AE¡ÍOB ÓÚE£¬CF¡ÍOBÓÚF£¬ÔòËıßÐÎAECFÊǾØÐΣ¬ÓÉͼ¢ÚÇó³öOE¡¢EF¡¢FB¡¢AE¼´¿É½â¾öÎÊÌ⣮
£¨2£©Èçͼ¢ÚÖУ¬·ÖÁ½ÖÖÇéÐ΢ÙOP1=P1Aʱ£¬ÉèOP1=AP1=x£¬ÔÚRT¡÷AP1EÖУ¬ÀûÓù´¹É¶¨Àí¼´¿É½â¾ö£¬¢Úµ±OA=AP2ʱ£¬¸ù¾ÝµÈÑüÈý½ÇÐÎÐÔÖʼ´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©Èçͼ¢ÙÖУ¬×÷AE¡ÍOB ÓÚE£¬CF¡ÍOBÓÚF£¬ÔòËıßÐÎAECFÊǾØÐΣ¬
ÓÉͼÏó¢Ú¿ÉÖª£ºOE=2£¬AE=CF=1£¬EF=AC=4£¬FB=1£¬
¡àa=S¡÷AOE+S¾ØÐÎAECF=1+4=5£¬
b=OB=2+4+1=7£®
£¨2£©Èçͼ¢ÚÖУ¬
¢ÙOP1=P1Aʱ£¬ÉèOP1=AP1=x£¬ÔÚRT¡÷AP1EÖУ¬¡ß¡ÏAEP1=90¡ã£¬AE=1£¬AP1=x£¬P1E=2-x£¬
¡àx2=12+£¨2-x£©2£¬
¡àx=$\frac{5}{4}$£¬
¡àt=$\frac{5}{4}$£®
¢Úµ±OA=AP2ʱ£¬OE=EP2=2£¬
¡àOP2=4£¬
¡àt=4£®
×ÛÉÏËùÊöt=$\frac{5}{4}$»ò4ʱ¡÷OAPÊǵÈÑüÈý½ÇÐΣ®

µãÆÀ ±¾Ì⿼²é¶¯µãÎÊÌ⺯ÊýͼÏó¡¢¹´¹É¶¨Àí¡¢µÈÑüÈý½ÇÐεÄÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÕýÈ·ÈÏʶͼÐζÁ¶®Í¼ÏóÐÅÏ¢£¬Ñ§»á·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$ÊǶþÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{ax+by=7}\\{ax-by=1}\end{array}\right.$µÄ½â£¬ÔòabµÄֵΪ£¨¡¡¡¡£©
A£®-2B£®-1C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èô¹ØÓÚx¡¢yµÄ¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{2x+y=3k-1}\\{x+2y=-2}\end{array}\right.$µÄ½âÂú×ãx+y¡Ü1£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®»¯¼ò£º$\frac{2a}{{a}^{2}-4}$¡Â£¨$\frac{{a}^{2}}{a-2}$-a£©£¬È»ºóÔÚ0£¬1£¬2£¬-2ÖÐѡһ¸öºÏÊʵÄÖµ´úÈëÇóÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{1}{2ab}$-$\frac{1}{a-b}$£¨$\frac{a-b}{2ab}$+$\frac{-{a}^{2}+{b}^{2}}{2ab}$£©£¬ÆäÖÐa=$\frac{1}{2}$£¨3-2$\sqrt{2}$£©£¬b=$\frac{1}{2}$£¨3+2$\sqrt{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èçͼ£¬±ß³¤Ò»¶¨µÄÕý·½ÐÎABCD£¬QΪCDÉÏÒ»¸ö¶¯µã£¬AQ½»BDÓÚµãM£¬¹ýM×÷MN¡ÍAQ½»BCÓÚµãN£¬×÷NP¡ÍBDÓÚµãP£¬Á¬½ÓNQ£¬ÏÂÁнáÂÛ£º¢ÙAM=MN£»¢ÚMP=$\frac{1}{2}$BD£»¢ÛBN+DQ=NQ£»¢Ü$\frac{AB+BN}{BM}$Ϊ¶¨Öµ£®ÆäÖÐÒ»¶¨³ÉÁ¢µÄÊǢ٢ڢۢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Å×ÎïÏßy=x2-4xµÄ¶Ô³ÆÖáÊÇx=2£¬ËµÃ÷ÔÚ¶Ô³ÆÖáµÄ×ó²à£¬¼´x£¼2ʱ£¬yËæxµÄÔö´ó¶ø¼õС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖª£¬Èçͼ£¬Ö±ÏßMN½»¡ÑOÓÚA£¬BÁ½µã£¬ACÊÇÖ±¾¶£¬ADƽ·Ö¡ÏCAM½»¡ÑOÓÚD£¬¹ýD×÷DE¡ÍMNÓÚE£®
£¨1£©ÇóÖ¤£ºDEÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©ÈôDE=3cm£¬AE=1cm£¬Çó¡ÑOµÄ°ë¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¼ÆË㣺
£¨1£©$\frac{£¨\sqrt{20}+\sqrt{5}£©}{\sqrt{5}}$-$\sqrt{\frac{1}{3}}$$•\sqrt{12}$£»
£¨2£©3$\sqrt{18}$+$\frac{1}{5}\sqrt{50}$-4$\sqrt{\frac{1}{2}}$£®
£¨3£©|-2$\sqrt{2}$|-£¨$\frac{1}{5}$£©0+$\frac{2}{\sqrt{2}}$£»
£¨4£©8-$\sqrt{2}$£¨$\sqrt{2}+2$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸