精英家教网 > 初中数学 > 题目详情

【题目】计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生 必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

1)这次被调查的学生共有 人;扇形统计图中,选“D一园艺种植的学生人数所占圆心角的度数是 °

2)请你将条形统计图补充完整;

3)若该校学生总数为 1500 人,试估计该校学生中最喜欢机器人和最喜欢航模项目的总 人数

【答案】120072260(人),图见解析(31050人.

【解析】

1)由A类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D人数占总人数的比例可得;

2)首先求得C项目对应人数,即可补全统计图;

3)总人数乘以样本中BC人数所占比例可得.

1)∵A类有20人,所占扇形的圆心角为36°

∴这次被调查的学生共有:20÷200(人);

选“D一园艺种植”的学生人数所占圆心角的度数是360°×72°

故答案为:20072

2C项目对应人数为:20020804060(人);

补充如图.

31500×1050(人),

答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据: ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ABC在半径为8O上,过点BBDAC,交OA延长线于点D.连接BC,且BCAOAC30°

1)求证:BDO的切线;

2)图中线段ADBD围成的阴影部分的面积=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD3AB3,点PAD的中点,点EBC上,CE2BE,点MN在线段BD上.若PMN是等腰三角形且底角与∠DEC相等,则MN______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在菱形ABCD中,∠A120°,点EBC边的中点,点P是对角线BD上一动点,设PD的长度为xPEPC的长度和为y,图2y关于x的函数图象,其中H是图象上的最低点,则a+b的值为(  )

A.7B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数 (a 0) x 轴交于 AC 两点,与 y 轴交于点 BP 抛物线的顶点,连接 AB,已知 OAOC=1:3.

1)求 AC 两点坐标;

2)过点 B BD∥x 轴交抛物线于 D,过点 P PE∥AB x 轴于 E,连接 DE

E 坐标;

tan∠BPM=,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,AB=3AC=4,则DEFGHI都在矩形KLMJ的边上,那么矩形KLMJ的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,∠A60°AB2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】电子跳蚤游戏盘是如图所示的.如果跳蚤开始时在边的处,.跳蚤第一步从跳到边的(第1次落点)处,且;第二步从跳到边的(第2次落点)处,且;第三步从跳到边的(第3次落点)处,且……;跳蚤按上述规则一直跳下去,第次落点为为正整数),则点之间的距离为(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案