【题目】如图,二次函数 (a 0) 与 x 轴交于 A、C 两点,与 y 轴交于点 B,P 为 抛物线的顶点,连接 AB,已知 OA:OC=1:3.
(1)求 A、C 两点坐标;
(2)过点 B 作 BD∥x 轴交抛物线于 D,过点 P 作 PE∥AB 交 x 轴于 E,连接 DE,
①求 E 坐标;
②若 tan∠BPM=,求抛物线的解析式.
【答案】(1)A(-1,0),C(3,0);(2)① E(-,0);②原函数解析式为:.
【解析】
(1)由二次函数的解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以设A(-m,0),C(3m,0),结合对称轴即可求出结果;
(2) ①过点P作PM⊥x轴于点M,连接PE,DE,先证明△ABO△EPM得到,找出OE=,再根据A(-1,0)代入解析式得:3a+c=0,c=-3a,即可求出OE的长,则坐标即可找到;
②设PM交BD于点N;根据点P(1,c-a),BN‖AC,PM⊥x轴表示出PN=-a,再由tan∠BPM=求出a,结合(1)知道c,即可知道函数解析式.
(1)∵二次函数为:(a<0),
∴对称轴为,
过点P作PM⊥x轴于点M,
则M(1,0),M为AC中点,
又OA:OC=1:3,
设A(-m,0),C(3m,0),
∴,
解得:m=1,
∴A(-1,0),C(3,0),
(2)①做图如下:
∵PE∥AB,
∴∠BAO=∠PEM,
又∠AOB=∠EMP,
∴△ABO△EPM,
∴ ,
由(1)知:A(-1,0),C(3,0),M(1,0),B(0,c),P(1,c-a),
∴,
∴OE=,
将A(-1,0)代入解析式得:3a+c=0,
∴c=-3a,
∴ ,
∴E(-,0);
②
设PM交BD于点N;
∵(a<0),
∴x=1时,y=c-a,即点P(1,c-a),
∵BN‖AC,PM⊥x轴
∴NM= BO=c,BN=OM=1,
∴PN=-a,
∵tan∠BPM=,
∴tan∠BPM=,
∴PN=,
即a=-,
由(1)知c=-3a,
∴c=;
∴原函数解析式为:.
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.
(1)求证:DE是⊙O的切线.
(2)若⊙O的半径为3cm,∠C=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)证明推断:如图①,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:.
(2)类比探究:如图②,在正方形ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F,若AB=6,求OF的长;
(3)拓展运用:若正方形ABCD变为□ABCD,如图③,连结DE交AC于点G,若四边形OFEG的面积为,求□ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生 必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;扇形统计图中,选“D一园艺种植”的学生人数所占圆心角的度数是 °;
(2)请你将条形统计图补充完整;
(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总 人数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+c经过点A(0,2)和点B(-1,0).
(1)求此抛物线的解析式;
(2)将此抛物线平移,使其顶点坐标为(2,1),平移后的抛物线与x轴的两个交点分别为点C,D(点C在点D的左边),求点C,D的坐标;
(3)将此抛物线平移,设其顶点的纵坐标为m,平移后的抛物线与x轴两个交点之间的距离为n,若1<m<3,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具店经销甲、乙两种不同的笔记本,已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,小玲同学买4本甲种笔记本和3本乙种笔记本共用了47元.
(1)甲、乙两种笔记本的进价分别是多少元?
(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时文具店获利最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平面直角坐标系,两点的坐标分别为.
(1)若是轴上的一个动点,则当_______时,的周长最短;
(2)若是轴上的两个动点,则当_______时,四边形的周长最短;
(3)设分别为轴和轴上的动点,请问:是否存在这样的点, 使四边形的周长最短?若存在,请求出,_________,________(不必写解答过程);若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com