精英家教网 > 初中数学 > 题目详情

【题目】群芳雅苑花卉基地出售两种花卉,其中马蹄莲每株4.5元,康乃馨每株6元.如果同一客户所购的马蹄莲数量多于1000株,那么所有的马蹄莲每株还可优惠0.3元.现某鲜花店向群芳雅苑花卉基地采购马蹄莲8001200株、康乃馨若干株本次采购共用了9000元.然后再以马蹄莲每株5.5元、康乃馨每株8元的价格卖出.(注:8001200株表示采购株数大于或等于800株,且小于或等于1200株;利润=销售所得金额﹣进货所需金额)

1)设鲜花店销售完这两种鲜花获得的利润为y元,采购马蹄莲x株,求yx之间的函数关系式;

2)若该鲜花店购进的马蹄莲多于1000株,采购马蹄莲多少时才能使获得的利润不少于2890元?

【答案】(1)当800≤x≤1000时,y=3000﹣0.5x,当1000<x≤1200时,y=3000﹣0.1x;(2)采购马蹄莲多于1000株且不多于1100株时才能使获得的利润不少于2890元.

【解析】

1)根据题意,利用分类讨论的方法可以求得yx的函数关系式;

2)根据(1)中的函数关系式,令30000.1x≥2890,即可求得x的取值范围,本题得以解决.

解:(1)当800≤x≤1000时,

y=(5.54.5x+86× 30000.5x

1000x≤1200时,

y=(5.54.5+0.3x+ 30000.1x

2)令30000.1x≥2890

解得,x≤1100

答:采购马蹄莲多于1000株且不多于1100株时才能使获得的利润不少于2890元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于点,点,与轴交于点,连接,又已知位于轴右侧且垂直于轴的动直线,沿轴正方向从运动到(不含点和点),且分别交抛物线,线段以及轴于点

1)求抛物线的表达式;

2)连接,当直线运动时,求使得相似的点的坐标;

3)作,垂足为,当直线运动时,求面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为元/件,每天销售(件)与销售单价(元)之间存在一次函数关系,如图所示.

1)求之间的函数关系;

2)如果规定每天漆器笔筒的销售量不低于件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?

3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于元,试确定该漆器笔筒销售单价的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCADE均为等边三角形,点OAC的中点,点DA射线BO上,连接OEEC,若AB4,则OE的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.

(1)下列选取样本的方法最合理的一种是 .(只需填上正确答案的序号)

在市中心某个居民区以家庭为单位随机抽取;在全市医务工作者中以家庭为单位随机抽取;在全市常住人口中以家庭为单位随机抽取.

(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:

m= ,n=

补全条形统计图;

根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?

家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,已知在中,,,延长,使,以为圆心,长为半径作⊙延长线于点,连接

(1)求证:是⊙的切线;

(2)若AB=2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠ACB=2∠B,如图,当C=90°,AD为BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.

(1)如图,当∠C≠90°,AD为BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:

(2)如图,当AD为ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,,以AB为直径作半圆O,点P从点A出发,沿AD方向以每秒1个单位的速度向点D运动,点Q从点C出发,沿C8方向以每秒3个单位的速度向点B运动,两点同时开始运动,当一点到达终点后,另一点也随之停止运动。设运动时间为.

(1)设点M为半圆上任意一点,则DM的最大值为______,最小值为______.

(2)PQ交半圆于点F和点G(F在点G的上方),当时,求的长度;

(3)在运动过程中,PQ和半圆能否相切?若相切,请求出此时l的值,若不能相切,请说明理由;

(4)N是半圆上一点,且,当运动时,PQ与半圆的交点恰好为点N,直接写出此时t的值。

查看答案和解析>>

同步练习册答案