精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC,若点P为BC延长线上一点,猜一猜:P到两腰的距离之差等于什么?请给出证明.
考点:等腰三角形的性质
专题:
分析:先过C作CF⊥AB于F,过P点作AC腰上的高PE,交AC的延长线于点E,根据三角形的面积公式
1
2
AB•CF=
1
2
AB•(PD-PE),再根据AB=AC,即可得出答案.
解答:解:P到两腰的距离之差等于△ABC腰上的高;
理由如下:
过C作CF⊥AB于F,过P点作AC腰上的高PE,交AC的延长线于点E,
∵S△ABC=
1
2
AB•CF,S△ABC=S△ABP-S△ACP=
1
2
AB•PD-
1
2
AC•PE,
1
2
AB•CF=
1
2
AB•PD-
1
2
AC•PE,
1
2
AB•CF=
1
2
AB•(PD-PE),
∵AB=AC,
∴CF=PD-PE.
点评:此题考查了等腰三角形的性质,用到的知识点是三角形的面积公式和等腰三角形的性质,关键是根据题意作出相应的辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,将长方形纸片的一角折叠,使顶点A落在点A′处,折痕CB;再将长方形纸片的另一角折叠,使顶点D落在点D′处,D′在BA′的延长线上,折痕EB.
(1)若∠ABC=65°,求∠DBE的度数;
(2)若将点B沿AD方向滑动(不与A、D重合),∠CBE的大小发生变化吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠AOB是平角,∠AOD=40°.
(1)求∠BOD的度数;
(2)若OE平分∠BOD,∠BOC是直角,求∠COE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,作出△ABC绕点C逆时针旋转60°的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=x2+2x-3的最小值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,E,F是BC上的两点,且BE=CF,连接AF,FD,相交于点P.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

点A是数轴上表示-1的点,将点A沿数轴移动3个单位长度到点B,则点B表示的数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,…归给计算结果中的个位数字规律,猜测22015-1的个位数字是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

一元二次方程3x2-3x=2+x化为一般形式后,a、b、c的值分别是(  )
A、3、-3、2
B、3、-4、-2
C、3、-2、2
D、3、-4、2

查看答案和解析>>

同步练习册答案