| A. | x=$\frac{a+b}{2}$ | B. | x=$\sqrt{ab}$ | C. | a2-b2=x2 | D. | $\frac{1}{x}$=$\frac{1}{a}$+$\frac{1}{b}$ |
分析 由PC∥AB得$\frac{PC}{AB}=\frac{CQ}{BQ}$,所以$\frac{a-x}{a}=\frac{CQ}{CQ+b}$,所以CQ=$\frac{ab}{x}-b$,所以DP+CQ=x+$\frac{ab}{x}-b$≥2$\sqrt{ab}$-b,当x=$\frac{ab}{x}$时,DP+CQ的值最小,由此即可解决问题.
解答 解:如图
,∵四边形ABCD是矩形,
∴AB=CD=a,AD=BC=b,AB∥CD,
∵PC∥AB,
∴$\frac{PC}{AB}=\frac{CQ}{BQ}$,
∴$\frac{a-x}{a}=\frac{CQ}{CQ+b}$,
∴CQ=$\frac{ab}{x}-b$,
∴DP+CQ=x+$\frac{ab}{x}-b$≥2$\sqrt{ab}$-b,
∴当x=$\frac{ab}{x}$时,DP+CQ的值最小,
∴x2=ab,
∴x=$\sqrt{ab}$.
故选B.
点评 本题考查矩形的性质、平行线分线段成比例定理,不等式的性质即a+b≥2$\sqrt{ab}$(a≥0,b≥0)且a=b时等号成立,灵活运用不等式性质是解决最值的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com