分析 (1)根据垂径定理得到$\widehat{BD}$=$\widehat{BC}$,于是得到∠BCD=∠D,根据平行线的判定定理即可得到结论;
(2)连接AC,推出△BCE∽△BAE,根据相似三角形的性质得到$\frac{BC}{AB}=\frac{BE}{BC}$,于是得到结论.
解答
(1)证明:∵CD⊥AB,AB是⊙O的直径,
∴$\widehat{BD}$=$\widehat{BC}$,
∵$\widehat{BC}$=$\widehat{PC}$,
∴$\widehat{BD}$=$\widehat{PC}$,
∴∠BCD=∠D,
∴CB∥PD;
(2)解:连接AC,
∵AB是⊙O的直径,CD⊥AB,
∴∠ACB=∠CEB=90°,
∵$\widehat{BC}$=$\widehat{BD}$,
∴∠BCE=∠A,
∴△BCE∽△BCA,
∴$\frac{BC}{AB}=\frac{BE}{BC}$,
∴AB=$\frac{B{C}^{2}}{BE}$=$\frac{{6}^{2}}{4}$=9,
∴⊙O的半径为$\frac{9}{2}$.
点评 本题考查了相似三角形的判定和性质,垂径定理,平行线的判定,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | $-\sqrt{5}$ | B. | $1-\sqrt{5}$ | C. | $\frac{{-1-\sqrt{5}}}{2}$ | D. | $\frac{3}{2}-\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x=$\frac{a+b}{2}$ | B. | x=$\sqrt{ab}$ | C. | a2-b2=x2 | D. | $\frac{1}{x}$=$\frac{1}{a}$+$\frac{1}{b}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com