【题目】根据下列要求,解答相关问题.
(1)请补全以下求不等式的解集的过程:
① 构造函数,画出图象:根据不等式特征构造二次函数y=;并在下面的坐标系中(图1)画出二次函数y=的图象(只画出大致图象即可);
② 求得界点,标示所需:当时,求得方程的解为 ;并用虚线标示出函数y=图象中<0的部分;
③借助图象,写出解集:由所标示图象,可得不等式<0的解集为 .
(2)请你利用上面求不等式解集的过程,求不等式-3≥0的解集.
【答案】(1)①见解析;② ;③ ;(2) x≥3或x≤-1
【解析】试题分析:(1)画出二次函数y=x2-2x的图象,利用图象法求出方程x2-2x=0,以及不等式x2-2x<0的解即可.
(2)画出函数y=x2-2x-3的图象,利用图象法即可解决问题.
试题解析:(1)二次函数y=x2-2x的图象如图1所示,
∵二次函数y=x2-2x与x轴交于O(0,0),A(2,0),
∴方程x2-2x=0的解为x=0或2.
由图象可知x2-2x<0的解集为0<x<2.
故答案为x=0或2,0<x<2.
(2)函数y=x2-2x-3的图象如图2所示,
∵A(-1,0),B(3,0),
∴不等式x2-2x-3≥0的解集,由图象可知,x≥3或x≤-1.
科目:初中数学 来源: 题型:
【题目】某社区去年购买了A、B两种型号的共享单车,购买A种单车共花费15000元,购买B种单车共花费14000元,购买A种单车的数量是购买B种单车数量的1.5倍,且购买一辆A种单车比购买一辆B种单车少200元.
(1)求去年购买一辆A种和一辆B种单车各需要多少元?
(2)为积极响应政府提出的“绿色发展低碳出行”号召,该社区决定今年再买A、B两种型号的单车共60辆,恰逢厂家对A、B两种型号单车的售价进行调整,A种单车售价比去年购买时提高了10%,B种单车售价比去年购买时降低了10%,如果今年购买A、B两种单车的总费用不超过34000元,那么该社区今年最多购买多少辆B种单车?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.
甲种客车 | 乙种客车 | |
载客量/(人/辆) | 30 | 42 |
租金/(元/辆) | 300 | 400 |
学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.
(1)参加此次研学旅行活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为 辆;
(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装商场购进一批T恤,每件进价40元,出于营销考虑,要求每件售价不得低于40元且不得高于60元,在销售过程中发现该T恤每周的销售量(件)与每件售价(元)之间满足一次函数关系:当销售单价为44元时,销量是72件,当销售单价为48元时,销售量为64件.
(1)请直接写出与的函数关系式;
(2)当商场每周销售这种T恤获得350元的利润时,每件的销售单价是多少元?
(3) 设该商场每周销售这种T恤所获得的利润为元,将该T恤销售单价定为多少元时,才能使商场销售该T恤所获利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点
(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.
(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD之间的数量关系,不必写理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点、、不在同一条直线上,.
(1)如图1,当,时,求的度数;
(2)如图2,、分别为、的平分线所在直线,试探究与的数量关系;
(3)如图3,在(2)的前提下,有,,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某机器零件的横截面如图所示,按要求线段AB和DC的延长线相交成直角才算合格,一工人测得∠A=23°,∠D=31°,∠AED=143°,请你帮他判断该零件是否合格:___.(填“合格”或“不合格”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为弧BE的中点,连接AD交OE于点F,若AC=FC
(Ⅰ)求证:AC是⊙O的切线;
(Ⅱ)若BF=5,DF=,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com