【题目】如图,四边形是菱形,在上,在延长线上,和相交于点,若,,的长为,则菱形的面积为________.
【答案】
【解析】
连接AC、BD,交于点O,分别取AE、BF的中点M、N,连接OM、ON,在AB上截取AH=AM,连接OH,过C作CP⊥AF于P,根据中位线定理可得到OM=CE,ON=DF,则有OM=ON,证明△AMO≌△AHO,得OM=OH=ON,继而可得∠AMO+∠ONH=180,再根据平行线的性质可得∠DAB+∠EGF=180°,从而得∠DAB=30°,继而根据含30度角的直角三角形的性质求出菱形高PC的长,代入面积公式即可求得答案.
连接AC、BD,交于点O,分别取AE、BF的中点M、N,连接OM、ON,在AB上截取AH=AM,连接OH,过C作CP⊥AF于P,
∵四边形ABCD是菱形,
∴O是BD的中点,也是AC的中点,
∴OM=CE,ON=DF,
∵CE=DF,
∴OM=ON,
∵AC平分∠DAB,
∴∠DAC=∠BAC,
∵AO=AO,
∴△AMO≌△AHO,
∴OM=OH,∠AMO=∠AHO,
∴OM=OH=ON,
∴∠OHN=∠ONH,
∵∠AHO+∠OHN=180°,
∴∠AMO+∠ONH=180,
∵OM∥EC,ON∥DF,
∴∠AMO=∠AEC,∠ONH=∠GFA,
∴∠AEC+∠GFA=180°,
∴∠DAB+∠EGF=180°,
∵∠CGF=30°,
∴∠EGF=150°,
∴∠DAB=30°,
∵AD∥BC,
∴∠CBF=∠DAB=30°,
∵AB=BC=6,
∴CP=BC=3,
∴菱形ABCD的面积=ABCP=6×3=18,
故答案为:18.
科目:初中数学 来源: 题型:
【题目】(本题8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求证:△ABC≌△AED;
(2)当∠B=140°时,求∠BAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=4.41cm,BC=8.83cm,P是BC上一动点,连接AP,设P,C两点间的距离为xcm,P,A两点间的距离为ycm.(当点P与点C重合时,x的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如表:
x/cm | 0 | 0.43 | 1.00 | 1.50 | 1.85 | 2.50 | 3.60 | 4.00 | 4.30 | 5.00 | 5.50 | 6.00 | 6.62 | 7.50 | 8.00 | 8.83 |
y/cm | 7.65 | 7.28 | 6.80 | 6.39 | 6.11 | 5.62 | 4.87 |
| 4.47 | 4.15 | 3.99 | 3.87 | 3.82 | 3.92 | 4.06 | 4.41 |
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当PA=PC时,PC的长度约为 cm.(结果保留一位小数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程=20,根据此情景,题中用“…”表示的缺失的条件应补为( )
A. 每天比原计划多铺设10米,结果延期20天完成
B. 每天比原计划少铺设10米,结果延期20天完成
C. 每天比原计划多铺设10米,结果提前20天完成
D. 每天比原计划少铺设10米,结果提前20天完成
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三个顶点的坐标分别为、、.
(1)若与关于y轴成轴对称,则三个顶点坐标分别为_________,____________,____________;
(2)若P为x轴上一点,则的最小值为____________;
(3)计算的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:(一)如果我们能找到两个实数x、y使且,这样,那么我们就称为“和谐二次根式”,则上述过程就称之为化简“和谐二次根式”.
例如:.
(二)在进行二次根式的化简与运算时,我们有时还会碰上如一样的式子,其实我们还可以将其进一步化简:,那么我们称这个过程为分式的分母有理化.
根据阅读材料解决下列问题:
(1)化简“和谐二次根式”:①___________,②___________;
(2)已知,,求的值;
(3)设的小数部分为,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图像线段AB表示甲出发不足2小时因故停车检修),请根据图像所提供的信息,解决如下问题:
(1)求乙车所行路程y与时间x的函数关系式;
(2)求两车在途中第二次相遇时,它们距出发地的路程;
(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在阳光下,小东同学测得一根长为米的竹竿的影长为米.
同一时刻米的竹竿的影长为________米.
同一时刻小东在测量树的高度时,发现树的影子不全落在地面上,有一部分落在操场的第一级台阶上,测得落在第一级台阶上的影子长为米,第一级台阶的高为米,落在地面上的影子长为米,则树的高度为________米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com