精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=4.41cm,BC=8.83cm,PBC上一动点,连接AP,设P,C两点间的距离为xcm,P,A两点间的距离为ycm.(当点P与点C重合时,x的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:

(1)通过取点、画图、测量,得到了xy的几组值,如表:

x/cm

0

0.43

1.00

1.50

1.85

2.50

3.60

4.00

4.30

5.00

5.50

6.00

6.62

7.50

8.00

8.83

y/cm

7.65

7.28

6.80

6.39

6.11

5.62

4.87

  

4.47

4.15

3.99

3.87

3.82

3.92

4.06

4.41

(说明:补全表格时相关数值保留一位小数)

(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

(3)结合画出的函数图象,解决问题:当PA=PC时,PC的长度约为  cm.(结果保留一位小数)

【答案】(1)4.6;(2)画图见解析;(3)4.4

解:(1)通过测量得4.6

(2)根据数据描点画图得

(3)根据题意,所画图与直线y=x交点,则测量得4.4

【解析】

根据题意,取点、画图、测量问题可解.

解:(1)通过测量得4.6

2)根据数据描点画图得

3)根据题意,所画图与直线y=x交点,则测量得4.4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,先描出点,点.

1)描出点关于轴的对称点的位置,写出的坐标

2)用尺规在轴上找一点,使的值最小(保留作图痕迹);

3)用尺规在轴上找一点,使(保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F

1求证:AEFDEB

2证明四边形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=x2﹣(3m+1)x+2m2+m(m>0),与y轴交于点C,与x轴交于点A(x1,0),B(x2,0),且x1<x2

(1)求2x1﹣x2+3的值;

(2)当m=2x1﹣x2+3时,将此抛物线沿对称轴向上平移n个单位,使平移后得到的抛物线顶点落在ABC的内部(不包括ABC的边),求n的取值范围(直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是求作∠AOB的角平分线的尺规作图过程.

已知:如图,钝角∠AOB.

求作:∠AOB的角平分线.

作法:

①在OAOB上,分别截取OD、OE,使OD=OE;

②分别以D、E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于点C;

③作射线OC.

所以射线OC就是所求作的∠AOB的角平分线.

请回答:该尺规作图的依据是__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】动手操作:
如图,已知ABCD,A为圆心,小于AC长为半径作圆弧,分别交AB,ACE,F两点,再分别以点E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.
问题解决:

(1)若∠ACD=78°,求∠MAB的度数;
(2)CNAM,垂足为点N,求证:CAN≌△CMN.
实验探究:
(3)直接写出当∠CAB的度数为多少时?CAM分别为等边三角形和等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,∠ADB=23°,EAD上一点.将矩形沿CE折叠,点D的对应点F恰好落在BC上,CEBDH,连接HF,则∠BHF=__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形是菱形,上,延长线上,相交于点,若的长为,则菱形的面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线的图象先向右平移个单位长度,再向下平移个单位长度,所得图象的解析式是,则

A. 13 B. 11 C. 10 D. 12

查看答案和解析>>

同步练习册答案