【题目】如图,AC切⊙O于点C,AB过圆心O交⊙O于点B、D,且AC=BC,若⊙O的半径为2,图中阴影部分的面积为 _____________________.
【答案】
【解析】
连接OC,由AC切⊙O于点C,可得OC⊥AC,然后设∠A=x°,由AB=AC以及圆周角定理,可得∠B=x°,∠AOC=2x°;再连接CD,易得△OCD是等边三角形.继而可由S阴影=S△ACO-S扇形ODC求得答案.
连接OC.
∵AC切⊙O于点C,
∴OC⊥AC.
∴∠ACO=90°,
设∠A=x°,
∵AC=BC,
∴∠B=∠A=x°.
∵OB=OC,
∴∠OCB=∠B=x°.
∴∠AOC=∠OCB+∠B=2x°.
在Rt△ACO中,
∵∠A+∠AOC=90°,
∴x+2x=90.
∴x=30.
即∠A=30°.
连接DC.
在Rt△ACO中,∠AOC=90°-∠A=60°.
又∵OD=OC,
∴△OCD是等边三角形.
∴CD=OD=2,∠AOC=60°.
∵BD是直径,
∴∠DCB=90°,BD=4.
由勾股定理得BC=2.
∴AC=BC=2.
∴S△ACO=ACOC=2,
S扇形ODC=π22=π,
∴S阴影=S△ACO-S扇形ODC=2-π.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在锐角中,,,是边上的一个动点,正方形是一个边长为的动正方形,其中点在上,,(与分居的两侧),正方形与的重叠的面积为.
当落在上时,求的值;
当不在上时,求与的关系式;
求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】结果如此巧合!
下面是小颖对一道题目的解答.
题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.
解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.
根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=ACBC
=(x+3)(x+4)
=(x2+7x+12)
=×(12+12)
=12.
小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?
请你帮她完成下面的探索.
已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.
可以一般化吗?
(1)若∠C=90°,求证:△ABC的面积等于mn.
倒过来思考呢?
(2)若ACBC=2mn,求证∠C=90°.
改变一下条件……
(3)若∠C=60°,用m、n表示△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=8cm,点P从点A出发,沿AB方向以每秒cm的速度向点B运动,同时动点Q从B点出发,以每秒1cm的速度向C点运动,设P,Q两点的运动时间为t(0<t<8)秒.
(1)BQ= ,BP= (用含t的式子表示).
(2)当t=2时,求△PCQ的面积(提示:在一个三角形中,若两个角相等,则角所对的边也相等).
(3)当PQ=PC时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知是边长为的等边三角形,点是射线上的动点,将绕点逆时针方向旋转得到,连接.
(1)如图1,猜想是什么三角形? ______;(直接写出结果)
(2)如图2,猜想线段、、之间的数量关系,并证明你的结论;
(3)当为何值时,,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一批名牌衬衫,每天可销售件,每件赢利元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经市场调查发现,如果每件衬衫每降价元,商场每天可多售出件.
如果每件衬衫降价元,商场每天赢利多少元?
如果商场每天要赢利元,且尽可能让顾客得到实惠,每件衬衫应降价多少元?
用配方法说明,每件衬衫降价多少元时,商场每天赢利最多,最多是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx+3与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,连接AC..
(1)请求出抛物线y=ax2+bx+3的解析式;
(2)如图2,点P、点Q同时从点A出发,点P沿AC以每秒个单位长度的速度,由点A向点C运动;点Q沿AB以每秒2个单位长度的速度,由点A向点B运动;当一个点停止运动时,另一个点也随之停止运动,设点P的运动时间为t秒,连接PQ.
①求证:PQ⊥AC;
②过点Q作QE⊥x轴,交抛物线于点E,连接PE,当PQ=PE时,请求出t的值;
③在y轴上是否存在点D,使以点A、P、Q、D为顶点的四边形是平行四边形?若存在,直接写出D点坐标:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是( )
A.10 B.15 C.20 D.30
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com