精英家教网 > 初中数学 > 题目详情

【题目】如图1,抛物线y=ax2+bx+3x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,连接AC..

(1)请求出抛物线y=ax2+bx+3的解析式;

(2)如图2,点P、点Q同时从点A出发,点P沿AC以每秒个单位长度的速度,由点A向点C运动;点Q沿AB以每秒2个单位长度的速度,由点A向点B运动;当一个点停止运动时,另一个点也随之停止运动,设点P的运动时间为t秒,连接PQ.

①求证:PQAC;

②过点QQEx轴,交抛物线于点E,连接PE,当PQ=PE时,请求出t的值;

③在y轴上是否存在点D,使以点A、P、Q、D为顶点的四边形是平行四边形?若存在,直接写出D点坐标:若不存在,请说明理由.

【答案】(1)y=﹣x2﹣2x+3;(2)①见解析;②t的值为;③D(0,1).

【解析】

(1)用待定系数法求函数解析式;(2)①证明△OAC为等腰直角三角形,再证△APQ∽△AOC,∠APQ=∠AOC=90°,所以PQ⊥AC;②作PF⊥x轴于F,PH⊥EQH,求出E(2t﹣3,2t),E(2t﹣3,2t)代入y=﹣x2﹣2x+3得﹣(2t﹣3)2﹣2(2t﹣3)+3=3,解方程可得;③解:存在.由四边形AQDP为平行四边形,得DQ=AP=t,∠DQO=∠PAQ=45°,OQ=OD=3﹣2t,可得t=(3﹣2t),解得t=1,可得D的坐标.

(1)解:设抛物线解析式为y=a(x+3)(x﹣1),

y=ax2+2ax﹣3a,

∴﹣3a=3,解得a=﹣1,

∴抛物线解析式为y=﹣x2﹣2x+3;

(2)①证明:当x=0时,y=﹣x2﹣2x+3=3,则C(0,3),

∴△OAC为等腰直角三角形,

∴AC=3

∵AP=t,AQ=2t,

=t, ==t,

=

而∠PAQ=∠OAC,

∴△APQ∽△AOC,

∴∠APQ=∠AOC=90°,

∴PQ⊥AC;

②证明:作PF⊥x轴于F,PH⊥EQH,如图2,则PF=AF=AP=t=t,

QOA上,OQ=3﹣2t,则Q(2t﹣3,0),H(2t﹣3,t),

Q点在OB上,OQ=2t﹣3,则Q(2t﹣3,0),H(2t﹣3,t),

∵PE=PQ,

∴EH=QH=t,

∴E(2t﹣3,2t),

E(2t﹣3,2t)代入y=﹣x2﹣2x+3得﹣(2t﹣3)2﹣2(2t﹣3)+3=3,解得t1=0(舍去),t2=

∴t的值为

③解:存在.

如图3,∵四边形AQDP为平行四边形,

∴DQ=AP=t,∠DQO=∠PAQ=45°,

OQ=OD=3﹣2t,

t=(3﹣2t),解得t=1,

∴D(0,1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数ykx+b的图象与x轴,y轴分别交于点(20),点(03).有下列结论:图象经过点(1,﹣3);关于x的方程kx+b0的解为x2关于x的方程kx+b3的解为x0x2时,y0.其中正确的是(  )

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC切⊙O于点C,AB过圆心O交⊙O于点B、D,且AC=BC,若⊙O的半径为2,图中阴影部分的面积为 _____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的面积为64ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为(  )

A.6B.8C.9D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:∠BAC的平分线与BC的垂直平分线相交于点DDEABDFAC,垂足分别为EFAB6AC4,则BE_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在扇形OAB中,COA的中点,CDOA,CD与弧AB交于点D,以O为圆心,OC的长为半径作弧CEOB于点E,若OA=6,AOB=120°,则图中阴影部分的面积为_________(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在江苏卫视《最强大脑》节目中,搭载百度大脑的小度机器人以3:1的总战绩,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.

某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.

(1)求该商家第一次购进机器人多少个?

(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】进入冬季,空调再次迎来销售旺季,某商场用元购进一批空调,该空调供不应求,商家又用元购进第二批这种空调,所购数量比第一批购进数量多台,但单价是第一批的.

(1)该商场购进第一批空调的单价多少元?

(2)若两批空调按相同的标价出售,春节将近,还剩下台空调未出售,为减少库存回笼资金,商家决定最后的台空调按九折出售,如果两批空调全部售完利润率不低于(不考虑其他因素),那么每台空调的标价至少多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,

(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.

(2)直接写出△ABC的面积为______.

(3)x轴上画出点P,使PA+PC最小.(不写作法,保留作图痕迹)

查看答案和解析>>

同步练习册答案