精英家教网 > 初中数学 > 题目详情

【题目】若二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是

【答案】k≤3且k≠2
【解析】解:∵二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点, ∴一元二次方程(k﹣2)x2+2x+1=0有解,

解得:k≤3且k≠2.
所以答案是:k≤3且k≠2.
【考点精析】根据题目的已知条件,利用抛物线与坐标轴的交点的相关知识可以得到问题的答案,需要掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A( )和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.

(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于任意三点矩面积,给出如下定义:“水平底为任意两点横坐标差的最大值,铅垂高为任意两点纵坐标差的最大值,则矩面积.

例如:三点坐标分别为,则水平底,“铅垂高,“矩面积.

(1)已知点.

①若三点的矩面积12,求点的坐标;

②求三点的矩面积的最小值.

(2)已知点,其中.三点的矩面积8,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图和图,请根据相关信息,解答下列问题:

)图1中a的值为

)求统计的这组初赛成绩数据的平均数、众数和中位数;

)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,弦CD⊥AB于E,∠CDB=15°,OE=2
(1)求⊙O的半径;
(2)将△OBD绕O点旋转,使弦BD的一个端点与弦AC的一个端点重合,则弦BD与弦AC的夹角为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果多边形的每个内角都比它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DABC内一点,CD平分ACBBDCDA=ABD,若AC=5BC=3,则BD的长为(  )

A. 1 B. C. D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是(
A.abc<0
B.4ac﹣b2<0
C.a﹣b+c<0
D.2a+b<0

查看答案和解析>>

同步练习册答案