分析 (1)由CA平分∠DCB,可推得∠ACB=∠ACD,又由于∠ADC=∠BAC,可证得△ABC∽△DAC,根据相似三角形的性质即可推出结论;
(2)由(1)可推出AC2=5×1=5,根据勾股定理可求AD.
解答 (1)证明:∵CA平分∠DCB,
∴∠ACB=∠ACD,
∵∠ADC=∠BAC=90°,
∴△ABC∽△DAC,
$\frac{AC}{DC}=\frac{BC}{AC}$,
∴AC2=BC•DC;
(2)解:由(1)知,AC2=BC•DC,
∵BC=5,DC=1,
∴AC2=5×1=5,
∵∠ADC=90°,
AD=$\sqrt{A{C}^{2}-D{C}^{2}}$=$\sqrt{5-{1}^{2}}$=2.
点评 本题主要考查了角平分线的定义,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:解答题
| 气温x(℃) | 0 | 5 | 10 | 15 | 20 |
| 音速y(米/秒) | 331 | 334 | 337 | 340 | 343 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | AD是∠BAC的平分线 | B. | ∠ADC=60° | ||
| C. | 点D是AB的垂直平分线上 | D. | 如果CD=2,AB=7,则可得S△ABD=14 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com