【题目】对于⊙P及一个矩形给出如下定义:如果⊙P上存在到此矩形四个顶点距离都相等的点,那么称⊙P是该矩形的“等距圆”.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A的坐标为(
,
),顶点C、D在x轴上,且OC=OD.
(1)当⊙P的半径为4时,
①在P1(
,
),P2(
,
),P3(
,
)中可以成为矩形ABCD的“等距圆”的圆心的是 ;
②如果点P在直线
上,且⊙P是矩形ABCD的“等距圆”,求点P的坐标;
(2)已知点P在
轴上,且⊙P是矩形ABCD的“等距圆”,如果⊙P与直线AD没有公共点,直接写出点P的纵坐标m的取值范围.
![]()
【答案】(1) ①
; ②
或![]()
(2)![]()
【解析】分析:(1)①由点A的坐标为(
,2),顶点C、D在x轴上,且OC=OD,可求得点B,C,D的坐标,继而可求得到此矩形四个顶点距离都相等的点E的坐标,然后由⊙P的半径为4,即可求得答案;
②首先设P的坐标为(x,-
x+1),易得x2+(-
x+1-1)2=42,继而求得答案;
(2)由题意可得|m-1|<
,且|m-1|≠0,继而求得答案.
详解:(1)∵点A的坐标为(
,2),顶点C、D在x轴上,且OC=OD,
∴点B的坐标为(-
,2),点C的坐标为(-
,0),点D的坐标为(
,0),
∴矩形ABCD的中心E的坐标为(0,1),
当⊙P的半径为4时,
①若P1(0,-3),则PE=1+3=4,
若P2(2
,3),则PE=
=4,
若P3(-2
,1)则PE=
,
∴可以成为矩形ABCD的“等距圆”的圆心的是:P1(0,-3),P2(2
,3);
故答案为:P1(0,-3),P2(2
,3).
![]()
②∵设P的坐标为(x,-
x+1),
∵E为(0,1),
∴x2+(-
x+1-1)2=42,
解得:x=±2
,
当x=2
时,y=-
×2
+1=-1;
当x=-2
时,y=-
×(-2
)+1=3;
∴点P的坐标为(2
,-1)或(-2
,3);
(2)∵点P在y上,且⊙P是矩形ABCD的“等距圆”,且⊙P与直线AD没有公共点,
∴|m-1|<
,且|m-1|≠0,
解得:1-
<m<1+
且m≠1.
∴点P的纵坐标m的取值范围为:1-
<m<1+
且m≠1.
科目:初中数学 来源: 题型:
【题目】在
年全国信息学奥利匹克联赛中,重庆八中学子再创辉煌,竞赛成绩全市领先,共
人获得全国一等奖,同时摘下高一年级组冠军,高二年级组第二名,包揽初二年级组冠、亚、季军.在校内选拔赛时,某位同学连续答题
道,答对一题得
分,答错一题扣
分,最终该同学获得
分。请问这位同学答对多少道题?下面共列出
个方程,其中错误的是( )
A.设答对了
道题,则可列方程:![]()
B.设答错了
道题,则可列方程:![]()
C.设答对题目得
分,则可列方程:![]()
D.设答错题目扣
分,则可列方程![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一只拉杆式旅行箱(图1),其侧面示意图如图2所示.已知箱体长AB=50cm,拉杆
的伸长距离最大时可达35cm,点A,B,C在同一条直线上.在箱体底端装有圆形的滚轮⊙A,⊙A与水平地面MN相切于点D.在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平地面的距离CE为59cm.
设AF∥MN.
(1)求⊙A的半径长;
(2)当人的手自然下垂拉旅行箱时,人感到较为舒服.某人将手自然下垂在C端拉旅行箱时,CE为80cm,
=64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:
,
,
)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有个填写运算符号的游戏:在“
”中的每个□内,填入
中的某一个(可重复使用),然后计算结果.
(1)计算:
;
(2)若请推算
□内的符号;
(3)在“
”的□内填入符号后,使计算所得数最小,直接写出这个最小数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图1,抛物线y=﹣
x2﹣
x+3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,点D的坐标是(0,﹣1),连接BC、AC
![]()
(1)求出直线AD的解析式;
(2)如图2,若在直线AC上方的抛物线上有一点F,当△ADF的面积最大时,有一线段MN=
(点M在点N的左侧)在直线BD上移动,首尾顺次连接点A、M、N、F构成四边形AMNF,请求出四边形AMNF的周长最小时点N的横坐标;
(3)如图3,将△DBC绕点D逆时针旋转α°(0<α°<180°),记旋转中的△DBC为△DB′C′,若直线B′C′与直线AC交于点P,直线B′C′与直线DC交于点Q,当△CPQ是等腰三角形时,求CP的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是一个水文站在雨季对某条河一周内水位变化情况的记录.其中,水位上升用正数表示,水位下降用负数表示(水位变化的单位:m).
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
变化 | +0.4 | -0.3 | -0.4 | -0.3 | +0.2 | +0.2 | +0.1 |
注:①表中记录的数据为每天12时的水位与前一天12时的水位的变化量.
②上周日12时的水位高度为2m.
(1)请你通过计算说明本周末水位是上升了还是下降了;
(2)用折线图表示本周每天的水位,并根据折线图说明水位在本周内的升降趋势.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在直角坐标系中放入一个边长AB长为3,BC长为5的矩形纸片ABCD,使得BC、AB所在直线分别与x、y轴重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.
![]()
(1)求折痕AE所在直线与x轴交点的坐标;
(2)如图2,过D作DG⊥AF,求DG的长度;
(3)将矩形ABCD水平向右移动n个单位,则点B坐标为(n,0),其中n>0.如图3所示,连接OA,若△OAF是等腰三角形,试求点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按下列要求画图(不写画法,保留作图痕迹)
(1)画∠AOB=90°;
(2)在∠AOB外画∠BOC=60°;
(3)分别画∠AOB,∠AOC的角平分线OD,OE
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com