精英家教网 > 初中数学 > 题目详情

【题目】数轴上,AB两点表示的数ab满足|a﹣6|+(b+12)2=0

(1)a=   b=   

(2)若小球MA点向负半轴运动、小球NB点向正半轴运动,两球同时出发,小球M运动的速度为每秒2个单位,当M运动到OB的中点时,N点也同时运动到OA的中点,则小球N的速度是每秒   个单位;

(3)若小球MN保持(2)中的速度,分别从AB两点同时出发,经过   秒后两个小球相距两个单位长度.

【答案】(1)6;﹣12;(2)2.5;(3)3240

【解析】

(1)根据非负数的性质即可求出a、b的值;

(2)先求出M运动到OB的中点时所用的时间为6秒,再设小球N的速度是每秒x个单位,根据经过6N点运动到OA的中点列出方程,解方程即可;

(3)小球M向负半轴运动、小球N向正半轴运动时,分相遇前与相遇后两种情况求解;小球M、小球N都向正半轴运动时,分追上前与追上后两种情况求解.

1)|a﹣6|+(b+12)2=0,

a﹣6=0,b+12=0,

a=6,b=﹣12.

故答案为6,﹣12;

(2)设M运动到OB的中点时所用的时间为t秒,

根据题意,得6﹣2t=﹣6,解得t=6.

设小球N的速度是每秒x个单位,

根据题意,得﹣12+6x=3,解得x=2.5,

答:小球N的速度是每秒2.5个单位.

故答案为2.5;

(3)若小球M、N保持(2)中的速度,分别从A、B两点同时出发,设经过y秒后两个小球相距两个单位长度.

A、B两点表示的数分别是6、﹣12,

A、B两点间的距离为6﹣(﹣12)=18.

如果小球M向负半轴运动、小球N向正半轴运动,

①相遇前:2y+2.5y=182,解得y=

②相遇后:2y+2.5y=18+2,解得y=

如果小球M、小球N都向正半轴运动,

①追上前:2.5y﹣2y=18﹣2,解得y=32;

②追上后:2.5y﹣2y=18+2,解得y=40.

答:若小球M、N保持(2)中的速度,分别从A、B两点同时出发,经过3240秒后两个小球相距两个单位长度.

故答案为3240.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在同一平面内OA⊥OB,OCOA绕点O顺时针方向旋转α(α<90°)度得到,OD平分∠BOC,OE平分∠AOC.

(1)若α=60∠AOC=60°时,求∠BOC,∠DOE.

(2)在α的变化过程中,∠DOE的度数是一个定值吗?若是定值,请求出这个值;若不是定值,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若等边三角形ABC的边长为4,求DF的长;
(3)写出求图中阴影部分的面积的思路.(不求计算结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(0,2),AOB为等边三角形,P是x轴上一个动点(不与原O重合),以线段AP为一边在其右侧作等边三角形APQ.

(1)求点B的坐标;

(2)在点P的运动过程中,ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由.

(3)连接OQ,当OQAB时,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点EEFABPQF,连接BF.

(1)求证:四边形BFEP为菱形;

(2)当点EAD边上移动时,折痕的端点P、Q也随之移动;

①当点Q与点C重合时(如图2),求菱形BFEP的边长;

②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,二次函数y=﹣ +bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣ +bx+c的图象分别交于B,C两点,点B在第一象限.

(1)求二次函数y=﹣ +bx+c的表达式;
(2)连接AB,求AB的长;
(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形ABCD中,EF是对角线BD上的两点, 如果添加一个条件使ABE≌△CDF,则添加的条件不能是(  )

A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在数学课上,老师提出如下问题:

小凯的作法如下:

老师说:“小凯的作法正确.”

请回答:在小凯的作法中,判定四边形AECF是菱形的依据是______________________

查看答案和解析>>

同步练习册答案