【题目】 如图,Rt△ABC 中,∠ACB=90 ,AC=6cm,BC=8cm,动点 P 从点 B 出发,在 BA边上以每秒 5cm 的速度向点 A 匀速运动,同时动点 Q 从点 C 出发,在 CB 边上以每秒 4cm 的 速度向点 B 匀速运动,运动时间为 t 秒(0<t<2),连接 PQ.
(1)若△BPQ 与△ABC 相似,求 t 的值;
(2)当 t 为何值时,四边形 ACQP 的面积最小,最小值是多少?
(3)连接 AQ,CP,若 AQ⊥CP,求 t 的值。
【答案】(1) :当 t=1 或 t=时,△BPQ 与△ABC 相似;(2)18;(3) t=
【解析】
根据题意△BPQ∽△BAC 相似再结合题意列比式解答此问,先四边形 ACQP 的面积式用含t的表达式表示出来,再求其最小值;过点 P 作 PM⊥BC 于点 M,设 AQ 与 CP 相交于点 N,先证明△ACQ∽CMP,再利用结论求t值.
(1)①△BPQ∽△BAC 相似时,则
∵BP=5t,QC=4t,AC=6cm,BC=8cm,
∴,解得:t=1;
②△BPQ∽△BCA 相似时,
则,即,解得:t=
综合上述:当 t=1 或 t=时,△BPQ 与△ABC 相似,
(2)作 PM⊥BC 于点 M.则△BPM∽△BAC,
∴,即,解得,PM=3t,
设四边形 ACQP 的面积为 y,由题意得:y=×6×8(84t)×3t=6(t1)2+18
∴当 t=1 时,面积最小为 18.
(3)过点 P 作 PM⊥BC 于点 M,设 AQ 与 CP 相交于点 N,则有 PB=3t,MC=84t,
∵∠NAC+∠NCA=90 ,∠PCM+∠NCA=90 ,∴∠NAC=∠PCM, 又∵∠ACQ=∠CMP=90 ,∴△ACQ∽CMP,
∴,即,解得:t=
科目:初中数学 来源: 题型:
【题目】随着人们环保意识的不断增强,我市家庭电动自行车的拥有量逐年增加.据统计,某小区2009年底拥有家庭电动自行车125辆,2011年底家庭电动自行车的拥有量达到180辆.
(1)若该小区2009年底到2012年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2012年底电动自行车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.
(1)求证:AE平分∠DAC;
(2)若AB=4,∠ABE=60°,求出图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).
(1)求该抛物线的解析式;
(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学社团小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点在一条直线上,请根据以上数据计算GH的长(=1.73,要求结果精确得到0.1m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的部分图像如图所示,图像过点,对称轴为直线,下列结论:(1);(2);(3)若点、点、点在该函数图像上,则;(4)若方程的两根为和,且,则.其中正确结论的序号是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.
(1)求m的取值范围;
(2)当x12+x22=6x1x2时,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com