【题目】若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形,例如△ABC中,三边分别为a、b、c,若满足b2=ac,则称△ABC为比例三角形,其中b为比例中项.
(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;
(2)如图,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.
①请直接写出图中的比例三角形;
②作AH⊥BD,当∠ADC=90°时,求的值;
(3)三边长分别为a、b、c的三角形是比例三角形,且b为比例中项,已知抛物线y=ax2+bx+c与y轴交于点B,顶点为A,O为坐标原点,以OB为直径的⊙M经过点A,记△OAB的面积为S1,⊙M的面积为S2,试问S1:S2的值是否为定值?若是请求出定值,若不是请求出S1:S2的取值范围.
【答案】(1)AC=;
(2)①△ADC是比例三角形;②;
(3)=.
【解析】
(1)分三种情况讨论,由比例三角形的定义可求解;
(2)①通过证明△ABC∽△DCA,可得,可得AD2=ACCD,可得△ADC是比例三角形;
②由勾股定理可得AB2+AC2=BC2,AD2+CD2=AC2,BC2+CD2=BD2,可得BD=AC,即可求解;
(3)分别求出S1,S2,由勾股定理可求b的值,即可求解.
解:(1)∵△ABC是比例三角形,AB=2,BC=3,
∴若AB是比例中项,则AB2=BC×AC,
∴AC=,
若AC是比例中项,则AC2=BC×AB,
∴AC=,
若BC是比例中项,则BC2=AC×AB,
∴AC=
(2)①△ADC是比例三角形,
理由如下,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵AD∥BC,
∴∠ACB=∠DAC,∠ADB=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD,
∵∠DAC=∠ACB,∠BAC=∠ADC,
∴△ABC∽△DCA,
∴,且AD=AB,
∴AD2=ACCD,
∴△ADC是比例三角形;
②∵∠ADC=90°=∠BAC,AD∥BC,
∴∠ADC=∠BCD=90°,
∵AB2+AC2=BC2,AD2+CD2=AC2,BC2+CD2=BD2,
∴2AC2=BD2,
∴BD=AC,
∵AB=AD,AH⊥BD,
∴BH=BD=AC,
∴
(3)∵三边长分别为a、b、c的三角形是比例三角形,且b为比例中项,
∴b2=ac,a>0,b>0,c>0,
∵已知抛物线y=ax2+bx+c与y轴交于点B,顶点为A,
∴B(0,c),点A(﹣,)
∴点A(﹣,c)
∵S1=×c×=,
S2=π×(c)2=,
∴====,
∵以OB为直径的⊙M经过点A,
∴∠OAB=90°,
∴OA2+OB2=OC2,
∴()2+(c)2+()2+(c﹣c)2=c2,
∴a2c2=b2,
∴(b2﹣1)b2=0,
∴b=,
∴=
科目:初中数学 来源: 题型:
【题目】如图,∠ABD=∠BCD=90°,ABCD=BCBD,BM∥CD交AD于点M.连接CM交DB于点N.
(1)求证:△ABD∽△BCD;
(2)若CD=6,AD=8,求MC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为弓形AB的弦,AB=2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在正方形网格中,△ABC的顶点坐标分别为(﹣1,0),(﹣2,﹣2),(﹣4,﹣1).请在所给直角坐标系中按要求画图和解答下列问题:
(1)将△ABC绕着某点按顺时针方向旋转得到△A′B'C',请直接写出旋转中心的坐标和旋转角度.
(2)画出△ABC关于点A成中心对称的△AED,若△ABC内有一点P(a,b),请直接写出经过这次变换后点P的对称点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.
请你根据图中信息,回答下列问题:
(1)本次共调查了 名学生.
(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于 度.
(3)补全条形统计图(标注频数).
(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为 人.
(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为.6m.
⑴求建筑物BC的高度;
⑵求旗杆AB的高度.(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=24cm.动点P从点A开始沿边AC向点C以2cm/s的速度移动;动点Q从点C开始沿边CB向点B以4cm/s的速度移动.如果P,Q两点同时出发.
(1)经过几秒,△PCQ的面积为32cm2?
(2)若设△PCQ的面积为S,运动时间为t,请写出当t为何值时,S最大,并求出最大值;
(3)当t为何值时,以P,C,Q为顶点的三角形与△ABC相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+b和反比例函数y=(k≠0)交于点A(4,1).
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①4a+2b+c>0;②abc<0;③b<a﹣c;④3b>2c;⑤a+b<m(am+b),(m≠1的实数);其中正确结论的个数为( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com