精英家教网 > 初中数学 > 题目详情
18.若A(m,y1),B(m+2,y2)是如图所示抛物线上的两点,当m取何值时,则①y1=y2?②y1>y2

分析 由图象可知函数顶点坐标且过点(1,0),可求得抛物线解析式,再分别把A、B点的坐标代入可用m表示出y1和y2,再分别求解即可.

解答 解:
由图象可知函数顶点坐标为(-1,4),且过点(1,0),
∴可设抛物线解析式为y=a(x+1)2+4,
把点(1,0)代入可得4a+4=0,解得a=-1,
∴抛物线解析式为y=-(x+1)2+4=-x2-2x+3,
∵A(m,y1),B(m+2,y2)是抛物线上的两点,
∴y1=-m2-2m+3,y2=-(m+2)2-2(m+2)+3=-m2-6m-5,
①当y1=y2时,则有-m2-2m+3=-m2-6m-5,解得m=-2,
即当m=-2时,y1=y2
②当y1>y2时,则有-m2-2m+3>-m2-6m-5,即-4m<8,
解得m>-2,
即当m>-2时有y1>y2

点评 本题主要考查二次函数图象上点的坐标特征,求得二次函数的解析式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.已知a为实数,且0<a<1,则a,$\frac{1}{a}$,$\sqrt{a}$,a2中最大的数是(  )
A.aB.$\frac{1}{a}$C.$\sqrt{a}$D.a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(2,0)、B(6,0)两点,且与y轴交于点C(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值;若不存在,请说明理由;
(3)在以AB为直径的圆中,直线CE与⊙M相切于点E,直线CE交x轴于点D,求直线CE的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.在△ABC中,点D、E在AB,AC上,给出下列四组条件:
①∠ADE=∠C
②AD•AB=AE•AC
③AD=4,AB=6,DE=2,BC=3
④AD:AB=1:3,AE:EC=1:2
从其中任选一组条件,能判定△ABC和△ADE相似的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若等腰直角三角形的内切圆半径的长为1,则其外接圆半径的长为(  )
A.$\sqrt{3}+1$B.$\sqrt{2}+1$C.$\sqrt{2}$D.$\sqrt{2}-1$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,一次函数y=-$\frac{1}{2}$x+2分别交y轴、x轴于A,B两点,抛物线y=-x2+bx+c过A,B两点.
(1)求这个抛物线的解析式;
(2)作垂直于x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,△NAB的面积有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.两个等腰直角△ABC和△DEF,AC=BC,AC⊥BC,DE⊥DF,DE=DF.
(1)如图①,点C与D重合时,求证:AF=BE,AF⊥BE.
(2)如图②当B点与F点重合时,连AE、CD相交于点P,将△CBD绕C点顺时针旋转90°,画出图形,并探究AE与CD之间数关系,并证明.
(3)在图②中,若∠CBE=15°,AC=4,DE=3,则AE=$\sqrt{26}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.若$\frac{1}{a}$+$\frac{1}{b}$=0,则①a+b=0;②a、b互为相反数;③a+b>0;④$\frac{a}{b}$=-1.上述命题正确的是(  )
A.①②③B.①②④C.D.①②

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.一个二次函数,它的图象的对称轴是y轴,顶点是原点,且经过点(-1,$\frac{1}{3}$).
(1)求出这个二次函数的表达式;
(2)画出这个二次函数的图象;
(3)抛物线在对称轴左侧部分,y随x的增大怎样变化?这个函数有最大值还是最小值?

查看答案和解析>>

同步练习册答案