精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB90°,∠ABC的平分线BDAC于点D

1)求作⊙O,使得点O在边AB上,且⊙O经过BD两点(要求尺规作图,保留作图痕迹,不写作法);

2)证明AC与⊙O相切.

【答案】1)见解析;(2)见解析

【解析】

1)作BD的垂直平分线交ABO,再以O点为圆心,OB为半径作圆即可;

2)证明ODBC得到∠ODC=90°,然后根据切线的判定定理可判断AC为⊙O的切线.

解:(1)如图,⊙O为所作;

2)证明:连接OD,如图,
BD平分∠ABC
∴∠CBD=ABD
OB=OD
∴∠OBD=ODB
∴∠CBD=ODB
ODBC
∴∠ODA=ACB
又∠ACB=90°
∴∠ODA=90°
ODAC
∵点D是半径OD的外端点,
AC与⊙O相切.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为ABCD四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:

1)求参加比赛的学生共有多少名?并补全图1的条形统计图.

2)在图2扇形统计图中,m的值为_____,表示“D等级”的扇形的圆心角为_____度;

3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k0)的图象交于A(﹣1,a),B两点,与x轴交于点C.

(1)求此反比例函数的表达式;

(2)若点P在x轴上,且SACP=SBOC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点从点出发以每秒2个单位的速度沿向终点运动,过点的垂线交折线于点,当点不和的顶点重合时,以为边作等边三角形,使点和点在直线的同侧,设点的运动时间为(秒).

1)求等边三角形的边长(用含的代数式表示);

2)当点落在的边上时,求的值;

3)设重合部分图形的面积为,求的函数关系式;

4)作直线,设点关于直线的对称点分别为,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】郴州市正在创建全国文明城市,某校拟举办创文知识抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A20件,B15件,共需380元;如果购买A15件,B10件,共需280元.

(1)A、B两种奖品每件各多少元?

(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明从家出门去遛狗(哈士奇,又名“撤手没”),当走到200米时狗绳突然断裂,脱了缰的哈士奇飞速跑开,小明也快速追狗,已知狗速是人速的2倍,4分钟时哈土奇听到小明的呼喊声,调头跑向小明,很快人狗相遇,但是哈士奇并没有停留的意思,继续跑向家中,小明调头继续追赶.脱缰之后狗和人的速度都不变.遛狗路程s(米)与时间t(分钟)之间的函数图象如图所示,下列说法:a500Y点纵坐标为580b2c7d9;其中正确的个数是(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,点EAD边上,点FAD的延长线上,且BE=CF.

(1)求证:四边形EBCF是平行四边形.

(2)若BEC=90°,ABE=30°,AB=,求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小飞研究二次函数y=-(x-m)2-m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m的值,使得函数图象的顶点与轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2x1+x2>2m,则y1<y2;④当-1<x<2时,yx的增大而增大,则m的取值范围为m≥2其中错误结论的序号是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点

(1)求m的值及C点坐标;

(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由

(3)P为抛物线上一点,它关于直线BC的对称点为Q

①当四边形PBQC为菱形时,求点P的坐标;

②点P的横坐标为t(0t4),当t为何值时,四边形PBQC的面积最大,请说明理由.

查看答案和解析>>

同步练习册答案