分析 先证∠DAC=∠BAE,再证明△DAC≌△BAE,得出对应角相等∠ADC=∠ABE,再由三角形的外角关系即可得出结果.
解答 解:∵△ABD、△AEC都是等边三角形,
∴AD=AB,AE=AC,∠DAB=∠CAE=60°,
∴∠DAC=∠BAC+60°,∠BAE=∠BAC+60°,
∴∠DAC=∠BAE,
在△DAC和△BAE中,
$\left\{\begin{array}{l}{AD=AB}&{\;}\\{∠DAC=∠BAE}&{\;}\\{AC=AE}&{\;}\end{array}\right.$,
∴△DAC≌△BAE(SAS),
∴∠ADC=∠ABE,
∴∠DPE=∠BDP+∠DBP
=∠BDP+∠DBA+∠ABE
=∠BDP+∠ADC+∠DBA
=60°+60°
=120°.
点评 本题考查了等边三角形的性质、三角形的外角性质、全等三角形的判定与性质;熟练掌握三角形全等的判定方法证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 88.4×102 | B. | 8.84×103 | C. | 8.80×103 | D. | 8.8×103 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com