精英家教网 > 初中数学 > 题目详情

【题目】请从下列两题中任选一题作答,我选择: .

:如图,已知,射线外部,且.若射线平分.的度数.

:如图,已知,射线的内部,射线的内部,且,若射线平分,射线平分.的度数.

【答案】A.105° B.50°

【解析】

A.根据角平行线的性质知∠BOD=15°,则可求出∠AOD的度数;

B.先求出∠AOC+BOD的度数为90°-10°=80°,再根据角平分线的性质值∠MOC+DON=40°,再求出∠MON即可.

A.平分

∴∠BOD=BOC=15°

∴∠AOD=∠AOB+BOD=105°

B.

∠AOC+BOD=90°-10°=80°

∴射线平分,射线平分

∠MOC+DON=∠AOC+BOD=40°,

∠MON=∠MOC+DON+=50°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,点C在AOB的一边OA上,过点C的直线DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度数;

(2)求证:CG平分OCD;

(3)当O为多少度时,CD平分OCF,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20181017日是我国第五个扶贫日”,某校学生会干部对学生倡导的扶贫自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图,(图中信息不完整),已知A.B两组捐款人数的比为1:5.

被调查的捐款人数分组统计表:

组别

捐款额x/

人数

A

1≤x<10

a

B

10≤x<20

100

C

20≤x<30

______

D

30≤x<40

______

E

40≤x

______

请结合以上信息解答下列问题:

(1)a的值和参与调查的总人数;

(2)补全被调查的捐款人数分组统计图1”并计算扇形B的圆心角度数;

(3)已知该校有学生2200人,请估计捐款数不少于30元的学生人数有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则结论:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正确的有( )

A. 4个 B. 3个 C. 2个 D. 1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,FCA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为(  )

A. 16 B. 20 C. 18 D. 22

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

情境再现:

举世瞩目的港珠澳大桥东接香港,西接珠海、澳门,全长千米,是世界上最长的跨海大桥,被誉为“新世界七大奇迹”之一.如图,香港口岸点至珠海口岸点千米,海底隧道全长约千米,隧道一端的东人工岛点到香港口岸的路程为千米.某一时刻,一辆穿梭巴士从香港口岸发车,沿港珠澳大桥开往珠海口岸.分钟后,一辆私家车也从香港口岸出发沿港珠澳大桥开往珠海口岸.在私家车出发的同时,一辆大客车从珠海口岸出发开往香港口岸.已知穿梭巴士的平均速度为千米/时,大客车的平均速度为千米/时,私家车的平均速度为千米/.

问题解决:

(1)穿梭巴士出发多长时间与大客车相遇?

(2)私家车能否在到达珠海口岸前追上穿梭巴士?说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为线段AD上一点,BCD的中点,AD=8 cm,BD=2 cm.

(1)图中共有多少条线段?

(2)AC的长.

(3)若点E在直线AD,EA=3 cm,BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC是直角三角形,∠C=90°,∠CAB的角平分线AE与 AB的垂直平分线DE相交于点E.

(1)如图2,若点E正好落在边BC上.

①求∠B的度数

②证明:BC=3DE

(2)如图3,若点E满足C、E、D共线.

求证:AD+DE=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在笔直的铁路上AB两点相距25kmCD为两村庄,DA=10kmCB=15kmDAABACBABB,现要在AB上建一个中转站E,使得CD两村到E站的距离相等.求E应建在距A多远处?

查看答案和解析>>

同步练习册答案