精英家教网 > 初中数学 > 题目详情

如图,已知BAD和BCE均为等腰直角三角形,BAD=BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.

(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;

(2)将图1中的BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:ACN为等腰直角三角形;

(3)将图1中BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.

 

 

(1)证明见解析;(2)证明见解析;(3)ACN仍为等腰直角三角形,证明见解析

【解析】

试题分析:(1)由ENAD和点M为DE的中点可以证到ADM≌△NEM,从而证到M为AN的中点.

(2)易证AB=DA=NE,ABC=NEC=135°,从而可以证到ABC≌△NEC,进而可以证到AC=NC,ACN=BCE=90°,则有ACN为等腰直角三角形.

(3)同(2)中的解题可得AB=DA=NE,ABC=NEC=180°﹣CBN,从而可以证到ABC≌△NEC,进而可以证到AC=NC,ACN=BCE=90°,则有ACN为等腰直角三角形.

试题解析:【解析】
(1)证明:如图1,

ENAD,∴∠MAD=MNE,ADM=NEM.

点M为DE的中点,DM=EM.

ADM和NEM中,∴△ADM≌△NEM(AAS).

AM=MN.M为AN的中点.

(2)证明:如图2,

BAD和BCE均为等腰直角三角形,AB=AD,CB=CE,CBE=CEB=45°.

ADNE,∴∠DAE+NEA=180°.

∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.

A,B,E三点在同一直线上,∴∠ABC=180°﹣CBE=135°.∴∠ABC=NEC.

∵△ADM≌△NEM(已证),AD=NE.

AD=AB,AB=NE.

ABC和NEC中,∴△ABC≌△NEC(SAS).

AC=NC,ACB=NCE.∴∠ACN=BCE=90°.

∴△ACN为等腰直角三角形.

(3)ACN仍为等腰直角三角形.证明如下:

如图3,此时A、B、N三点在同一条直线上.

ADEN,DAB=90°,∴∠ENA=DAN=90°.

∵∠BCE=90°,∴∠CBN+CEN=360°﹣90°﹣90°=180°.

A、B、N三点在同一条直线上,∴∠ABC+CBN=180°.∴∠ABC=NEC.

∵△ADM≌△NEM(已证),AD=NE.

AD=AB,AB=NE.

ABC和NEC中,∴△ABC≌△NEC(SAS).

AC=NC,ACB=NCE.∴∠ACN=BCE=90°.

∴△ACN为等腰直角三角形.

考点:1.面动旋转问题;2.等腰直角三角形的判定和性质;3.平行线的性质;4.全等三角形的判定和性质;5.多边形内角与外角..

 

练习册系列答案
相关习题

科目:初中数学 来源:2014年初中毕业升学考试(江苏无锡卷)数学(解析版) 题型:填空题

方程的解是

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏常州卷)数学(解析版) 题型:解答题

在平面直角坐标系中,点M(,),以点M为圆心,OM长为半径作M ,使M与直线OM的另一交点为点B,与轴,轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.

(1)写出AMB的度数;

(2)点Q在射线OP上,且OP·OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交轴于点E.

当动点P与点B重合时,求点E的坐标;

连接QD,设点Q的纵坐标为t,QOD的面积为S,求S与t的函数关系式及S的取值范围.

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏常州卷)数学(解析版) 题型:填空题

=30°,则的余角等于 度, 的值为 .

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏常州卷)数学(解析版) 题型:选择题

甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为,则成绩最稳定的是( )

A. B. C. D.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏宿迁卷)数学(解析版) 题型:解答题

如图是两个全等的含30°角的直角三角形.

(1)将其相等边拼在一起,组成一个没有重叠部分的平面图形,请你画出所有不同的拼接平面图形的示意图;

(2)若将(1)中平面图形分别印制在质地、形状、大小完全相同的卡片上,洗匀后从中随机抽取一张,求抽取的卡片上平面图形为轴对称图形的概率.

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏宿迁卷)数学(解析版) 题型:填空题

如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏南京卷)数学(解析版) 题型:解答题

如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.

(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西贺州卷)数学(解析版) 题型:选择题

如图,在等腰梯形ABCD中,ADBCCA平分BCDB=60°,若AD=3,则梯形ABCD的周长为( )

A. B. C. D.

 

查看答案和解析>>

同步练习册答案