如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.
![]()
(1)证明见解析;(2)证明见解析;(3)△ACN仍为等腰直角三角形,证明见解析.
【解析】
试题分析:(1)由EN∥AD和点M为DE的中点可以证到△ADM≌△NEM,从而证到M为AN的中点.
(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.
(3)同(2)中的解题可得AB=DA=NE,∠ABC=∠NEC=180°﹣∠CBN,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.
试题解析:【解析】
(1)证明:如图1,
∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.
∵点M为DE的中点,∴DM=EM.
在△ADM和△NEM中,∵
,∴△ADM≌△NEM(AAS).
∴AM=MN.∴M为AN的中点.
(2)证明:如图2,
∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.
∵AD∥NE,∴∠DAE+∠NEA=180°.
∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.
∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.
∵△ADM≌△NEM(已证),∴AD=NE.
∵AD=AB,∴AB=NE.
在△ABC和△NEC中,∵
,∴△ABC≌△NEC(SAS).
∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
(3)△ACN仍为等腰直角三角形.证明如下:
如图3,此时A、B、N三点在同一条直线上.
∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.
∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.
∵A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC.
∵△ADM≌△NEM(已证),∴AD=NE.
∵AD=AB,∴AB=NE.
在△ABC和△NEC中,∵
,∴△ABC≌△NEC(SAS).
∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
考点:1.面动旋转问题;2.等腰直角三角形的判定和性质;3.平行线的性质;4.全等三角形的判定和性质;5.多边形内角与外角..
科目:初中数学 来源:2014年初中毕业升学考试(江苏常州卷)数学(解析版) 题型:解答题
在平面直角坐标系
中,点M(
,
),以点M为圆心,OM长为半径作⊙M ,使⊙M与直线OM的另一交点为点B,与
轴,
轴的另一交点分别为点D,A(如图),连接AM.点P是
上的动点.
(1)写出∠AMB的度数;
(2)点Q在射线OP上,且OP·OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交
轴于点E.
①当动点P与点B重合时,求点E的坐标;
②连接QD,设点Q的纵坐标为t,△QOD的面积为S,求S与t的函数关系式及S的取值范围.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏常州卷)数学(解析版) 题型:选择题
甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为
,则成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏宿迁卷)数学(解析版) 题型:解答题
如图是两个全等的含30°角的直角三角形.
(1)将其相等边拼在一起,组成一个没有重叠部分的平面图形,请你画出所有不同的拼接平面图形的示意图;
(2)若将(1)中平面图形分别印制在质地、形状、大小完全相同的卡片上,洗匀后从中随机抽取一张,求抽取的卡片上平面图形为轴对称图形的概率.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏宿迁卷)数学(解析版) 题型:填空题
如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是 .
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏南京卷)数学(解析版) 题型:解答题
如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.
(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(广西贺州卷)数学(解析版) 题型:选择题
如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com