精英家教网 > 初中数学 > 题目详情

【题目】如图,将正方形纸片ABCD折叠,使点D落在边AB上的D'处,点C落在C'处,若∠AD'M=50°,则∠MNC'的度数为(  )

A. 100°B. 110°C. 120°D. 130°

【答案】B

【解析】

折叠后,四边形CDMN与四边形C′D′MN关于MN对称,则∠DMN=D′MN,同时∠AMD′=90°-AD'M=40°,所以∠DMN=D′MN=180°-40°÷2=70°,根据四边形内角和360°即可求得∠MNC'的度数.

解:四边形CDMN与四边形C′D′MN关于MN对称,则∠DMN=D′MN

且∠AMD′=90°-AD'M=40°

∴∠DMN=D′MN=180°-40°÷2=70°

由于∠MD′C′=NC′D′=90°

∴∠MNC'=360°-90°-90°-70°=110°

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,长方形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标为(100),点B的坐标为(108).

1)直接写出点C的坐标为:C );

2)已知直线AC与双曲线y=m0)在第一象限内有一点交点Q为(5n);

mn的值;

若动点PA点出发,沿折线AOOC的路径以每秒2个单位长度的速度运动,到达C处停止.求△OPQ的面积S与点P的运动时间t(秒)的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(–4,n),B(2,–4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点

1)求反比例函数和一次函数的解析式;

2)求直线AB与x轴的交点C的坐标及AOB的面积;

3)求不等式的解集(请直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCO ABC 所在平面内的一点,连接 OBOC,将∠ABO、∠ACO分别记为∠1、∠2

(1)如图(1),当点 O 在图中所示的位置时,∠1+∠2+∠A+∠O

(2)如图(2),当点 O ABC 的内部时,∠1、∠2、∠A、∠OC四个角之间满足怎样 的数量关系?请写出你的结论并说明理由;

(3)当点 O ABC 所在平面内运动时( O 不在三边所在的直线上),由于所处的位 置不同,∠1、∠2、∠A、∠OC四个角之间满足的数量关系还存在着与(1)(2) 中不同的结论,请在图(3)中画出一种不同的示意图,并直接写出相应的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程的解法中,错误的个数是(  )

①方程2x-1=x+1移项,得3x=0

②方程=1去分母,得x-1=3=x=4

③方程1-去分母,得4-x-2=2x-1

④方程去分母,得2x-2+10-5x=1

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABBC于点B,CDBC于点C,AB=4,CD=6,BC=14,PBC边上一点,试问BP为何值时,以A,B,P为顶点的三角形与以P,C,D为顶点的三角形相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的解析式为y=2x+5,其图象过点A-2a),Bb-1).
1)求ab的值,并画出此一次函数的图象;

2)在y轴上是否存在点C,使得AC+BC的值最小?若存在,求出点C的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,甲、乙两车分别从相距480kmA、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:

(1)乙车的速度是   千米/时,乙车行驶的时间t=   小时;

(2)求甲车C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;

(3)直接写出甲车出发多长时间两车相距80千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠B=90°,AB=6cm,BC=8cm,点D从点A出发以1cm/s的速度运动到点C停止.作DEAC交边ABBC于点E,以DE为边向右作正方形DEFG.设点D的运动时间为t(s).

(1)求AC的长.

(2)请用含t的代数式表示线段DE的长.

(3)当点F在边BC上时,求t的值.

(4)设正方形DEFGABC重叠部分图形的面积为S(cm2),当重叠部分图形为四边形时,求St之间的函数关系式.

查看答案和解析>>

同步练习册答案