精英家教网 > 初中数学 > 题目详情

【题目】某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,此时地面上的点E,标杆的顶端点D,大雁塔的塔尖点B正好在同一直线上,侧得EC=4米,将标杆CD向后移到点G处,此时地面上的点F,标杆的顶端点H,大雁塔的塔尖点B正好在同一直线上(F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米,请你根据以上数据,计算大雁塔的高度AB.

【答案】大雁塔的高度AB55

【解析】

EDC∽△EBAFHG∽△FBA,可得,因为DC=HG,推出,列出方程求出CA=106,由,可得,由此即可解决问题.

ABAFCDAFHGAF

ABCDHG

EDC∽△EBAFHG∽△FBA

DC=HG

CA=106米,

AB=55米,

答:大雁塔的高度AB55米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,函数(是常数,)在同一平面直角坐标系的图象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次聚会上,规定每两个人见面必须握手,且握手1次.

1)若参加聚会的人数为3,则共握手   次;若参加聚会的人数为5,则共握手   次;

2)若参加聚会的人数为nn为正整数),则共握手   次;

3)若参加聚会的人共握手28次,请求出参加聚会的人数.

4)嘉嘉由握手问题想到了一个数学问题:若线段AB上共有m个点(不含端点AB),线段总数为多少呢?请直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果关于x的一元二次方程ax2+bx+c0a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为倍根方程.例如,一元二次方程x26x+80的两个根是x12x24,则方程x26x+80倍根方程

1)根据上述定义,一元二次方程2x2+x10  (填不是倍根方程

2)若一元二次方程x23x+c0倍根方程,则c 

3)若关于x的一元二次方程ax2+bx+c0a≠0)是倍根方程,则abc之间的关系为 

4)若(x2)(mxn)=0m≠0)是倍根方程,求代数式4m25mn+n2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD和正方形CEFG的边长分别为abBEDG相交于点H,连接HC,给出下列结论:①BE=DG;②BEDG;③DE2+BG2=2a2+2b2,其中正确的结论是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,点CD是圆上两点,且OD∥ACODBC交于点E.

1)求证:EBC的中点;

2)若BC8DE3,求AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点,以原点O为圆心、3为半径作⊙O,⊙Ox轴交于点BC.P从点O出发,以每秒1个单位的速度沿y轴正半轴运动,运动时间为.连结AP,将沿AP翻折,得到,求有一边所在直线与⊙O相切时的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形中,连结,点从点出发,以每秒1个单位的速度沿着的路径运动,运动时间为(秒). 过点于点,在矩形的内部作正方形. 的右侧)

1)如图,当时,

①若点的内部,连结,求证:

②当时,设正方形的重叠部分面积为,求的函数关系式;

2)当时,若直线将矩形的面积分成两部分,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案